Solve for a
a=\frac{1}{4\left(c+8\right)}
c\neq -8
Solve for c
c=-8+\frac{1}{4a}
a\neq 0
Share
Copied to clipboard
1-4ac=32a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4a.
1-4ac-32a=0
Subtract 32a from both sides.
-4ac-32a=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\left(-4c-32\right)a=-1
Combine all terms containing a.
\frac{\left(-4c-32\right)a}{-4c-32}=-\frac{1}{-4c-32}
Divide both sides by -4c-32.
a=-\frac{1}{-4c-32}
Dividing by -4c-32 undoes the multiplication by -4c-32.
a=\frac{1}{4\left(c+8\right)}
Divide -1 by -4c-32.
a=\frac{1}{4\left(c+8\right)}\text{, }a\neq 0
Variable a cannot be equal to 0.
1-4ac=32a
Multiply both sides of the equation by 4a.
-4ac=32a-1
Subtract 1 from both sides.
\left(-4a\right)c=32a-1
The equation is in standard form.
\frac{\left(-4a\right)c}{-4a}=\frac{32a-1}{-4a}
Divide both sides by -4a.
c=\frac{32a-1}{-4a}
Dividing by -4a undoes the multiplication by -4a.
c=-8+\frac{1}{4a}
Divide 32a-1 by -4a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}