Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+1\right)\left(1-3x\right)=4\left(1+x\right)-\left(4x-4\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-1\right)\left(x+1\right), the least common multiple of 4x-4,x^{2}-1,x+1.
-2x-3x^{2}+1=4\left(1+x\right)-\left(4x-4\right)
Use the distributive property to multiply x+1 by 1-3x and combine like terms.
-2x-3x^{2}+1=4+4x-\left(4x-4\right)
Use the distributive property to multiply 4 by 1+x.
-2x-3x^{2}+1=4+4x-4x+4
To find the opposite of 4x-4, find the opposite of each term.
-2x-3x^{2}+1=4+4
Combine 4x and -4x to get 0.
-2x-3x^{2}+1=8
Add 4 and 4 to get 8.
-2x-3x^{2}+1-8=0
Subtract 8 from both sides.
-2x-3x^{2}-7=0
Subtract 8 from 1 to get -7.
-3x^{2}-2x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)\left(-7\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -2 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)\left(-7\right)}}{2\left(-3\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+12\left(-7\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-2\right)±\sqrt{4-84}}{2\left(-3\right)}
Multiply 12 times -7.
x=\frac{-\left(-2\right)±\sqrt{-80}}{2\left(-3\right)}
Add 4 to -84.
x=\frac{-\left(-2\right)±4\sqrt{5}i}{2\left(-3\right)}
Take the square root of -80.
x=\frac{2±4\sqrt{5}i}{2\left(-3\right)}
The opposite of -2 is 2.
x=\frac{2±4\sqrt{5}i}{-6}
Multiply 2 times -3.
x=\frac{2+4\sqrt{5}i}{-6}
Now solve the equation x=\frac{2±4\sqrt{5}i}{-6} when ± is plus. Add 2 to 4i\sqrt{5}.
x=\frac{-2\sqrt{5}i-1}{3}
Divide 2+4i\sqrt{5} by -6.
x=\frac{-4\sqrt{5}i+2}{-6}
Now solve the equation x=\frac{2±4\sqrt{5}i}{-6} when ± is minus. Subtract 4i\sqrt{5} from 2.
x=\frac{-1+2\sqrt{5}i}{3}
Divide 2-4i\sqrt{5} by -6.
x=\frac{-2\sqrt{5}i-1}{3} x=\frac{-1+2\sqrt{5}i}{3}
The equation is now solved.
\left(x+1\right)\left(1-3x\right)=4\left(1+x\right)-\left(4x-4\right)
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-1\right)\left(x+1\right), the least common multiple of 4x-4,x^{2}-1,x+1.
-2x-3x^{2}+1=4\left(1+x\right)-\left(4x-4\right)
Use the distributive property to multiply x+1 by 1-3x and combine like terms.
-2x-3x^{2}+1=4+4x-\left(4x-4\right)
Use the distributive property to multiply 4 by 1+x.
-2x-3x^{2}+1=4+4x-4x+4
To find the opposite of 4x-4, find the opposite of each term.
-2x-3x^{2}+1=4+4
Combine 4x and -4x to get 0.
-2x-3x^{2}+1=8
Add 4 and 4 to get 8.
-2x-3x^{2}=8-1
Subtract 1 from both sides.
-2x-3x^{2}=7
Subtract 1 from 8 to get 7.
-3x^{2}-2x=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-2x}{-3}=\frac{7}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{2}{-3}\right)x=\frac{7}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{2}{3}x=\frac{7}{-3}
Divide -2 by -3.
x^{2}+\frac{2}{3}x=-\frac{7}{3}
Divide 7 by -3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-\frac{7}{3}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=-\frac{7}{3}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=-\frac{20}{9}
Add -\frac{7}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=-\frac{20}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{-\frac{20}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{2\sqrt{5}i}{3} x+\frac{1}{3}=-\frac{2\sqrt{5}i}{3}
Simplify.
x=\frac{-1+2\sqrt{5}i}{3} x=\frac{-2\sqrt{5}i-1}{3}
Subtract \frac{1}{3} from both sides of the equation.