Solve for x
x=\frac{8}{121}\approx 0.066115702
Graph
Share
Copied to clipboard
5\left(1-2x-3\right)=540x-36\left(2+x\right)-30\left(x-1\right)
Multiply both sides of the equation by 180, the least common multiple of 36,5,6.
5\left(-2-2x\right)=540x-36\left(2+x\right)-30\left(x-1\right)
Subtract 3 from 1 to get -2.
-10-10x=540x-36\left(2+x\right)-30\left(x-1\right)
Use the distributive property to multiply 5 by -2-2x.
-10-10x=540x-72-36x-30\left(x-1\right)
Use the distributive property to multiply -36 by 2+x.
-10-10x=504x-72-30\left(x-1\right)
Combine 540x and -36x to get 504x.
-10-10x=504x-72-30x+30
Use the distributive property to multiply -30 by x-1.
-10-10x=474x-72+30
Combine 504x and -30x to get 474x.
-10-10x=474x-42
Add -72 and 30 to get -42.
-10-10x-474x=-42
Subtract 474x from both sides.
-10-484x=-42
Combine -10x and -474x to get -484x.
-484x=-42+10
Add 10 to both sides.
-484x=-32
Add -42 and 10 to get -32.
x=\frac{-32}{-484}
Divide both sides by -484.
x=\frac{8}{121}
Reduce the fraction \frac{-32}{-484} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}