Solve for x (complex solution)
x=\frac{-\sqrt{2}i+1}{3}\approx 0.333333333-0.471404521i
x=\frac{1+\sqrt{2}i}{3}\approx 0.333333333+0.471404521i
Graph
Share
Copied to clipboard
\left(x-1\right)\left(1-2x\right)=\left(x+1\right)x
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x+1,x-1.
3x-2x^{2}-1=\left(x+1\right)x
Use the distributive property to multiply x-1 by 1-2x and combine like terms.
3x-2x^{2}-1=x^{2}+x
Use the distributive property to multiply x+1 by x.
3x-2x^{2}-1-x^{2}=x
Subtract x^{2} from both sides.
3x-3x^{2}-1=x
Combine -2x^{2} and -x^{2} to get -3x^{2}.
3x-3x^{2}-1-x=0
Subtract x from both sides.
2x-3x^{2}-1=0
Combine 3x and -x to get 2x.
-3x^{2}+2x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)\left(-1\right)}}{2\left(-3\right)}
Square 2.
x=\frac{-2±\sqrt{4+12\left(-1\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-2±\sqrt{4-12}}{2\left(-3\right)}
Multiply 12 times -1.
x=\frac{-2±\sqrt{-8}}{2\left(-3\right)}
Add 4 to -12.
x=\frac{-2±2\sqrt{2}i}{2\left(-3\right)}
Take the square root of -8.
x=\frac{-2±2\sqrt{2}i}{-6}
Multiply 2 times -3.
x=\frac{-2+2\sqrt{2}i}{-6}
Now solve the equation x=\frac{-2±2\sqrt{2}i}{-6} when ± is plus. Add -2 to 2i\sqrt{2}.
x=\frac{-\sqrt{2}i+1}{3}
Divide -2+2i\sqrt{2} by -6.
x=\frac{-2\sqrt{2}i-2}{-6}
Now solve the equation x=\frac{-2±2\sqrt{2}i}{-6} when ± is minus. Subtract 2i\sqrt{2} from -2.
x=\frac{1+\sqrt{2}i}{3}
Divide -2-2i\sqrt{2} by -6.
x=\frac{-\sqrt{2}i+1}{3} x=\frac{1+\sqrt{2}i}{3}
The equation is now solved.
\left(x-1\right)\left(1-2x\right)=\left(x+1\right)x
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x+1,x-1.
3x-2x^{2}-1=\left(x+1\right)x
Use the distributive property to multiply x-1 by 1-2x and combine like terms.
3x-2x^{2}-1=x^{2}+x
Use the distributive property to multiply x+1 by x.
3x-2x^{2}-1-x^{2}=x
Subtract x^{2} from both sides.
3x-3x^{2}-1=x
Combine -2x^{2} and -x^{2} to get -3x^{2}.
3x-3x^{2}-1-x=0
Subtract x from both sides.
2x-3x^{2}-1=0
Combine 3x and -x to get 2x.
2x-3x^{2}=1
Add 1 to both sides. Anything plus zero gives itself.
-3x^{2}+2x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+2x}{-3}=\frac{1}{-3}
Divide both sides by -3.
x^{2}+\frac{2}{-3}x=\frac{1}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{2}{3}x=\frac{1}{-3}
Divide 2 by -3.
x^{2}-\frac{2}{3}x=-\frac{1}{3}
Divide 1 by -3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{1}{3}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{2}{9}
Add -\frac{1}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3}\right)^{2}=-\frac{2}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{2}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{\sqrt{2}i}{3} x-\frac{1}{3}=-\frac{\sqrt{2}i}{3}
Simplify.
x=\frac{1+\sqrt{2}i}{3} x=\frac{-\sqrt{2}i+1}{3}
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}