Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(14x-7\right)\left(1-2x\right)+\left(6x+3\right)\left(2x+1\right)=7x
Variable x cannot be equal to any of the values -\frac{1}{2},0,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 21x\left(2x-1\right)\left(2x+1\right), the least common multiple of 6x^{2}+3x,14x^{2}-7x,12x^{2}-3.
28x-28x^{2}-7+\left(6x+3\right)\left(2x+1\right)=7x
Use the distributive property to multiply 14x-7 by 1-2x and combine like terms.
28x-28x^{2}-7+12x^{2}+12x+3=7x
Use the distributive property to multiply 6x+3 by 2x+1 and combine like terms.
28x-16x^{2}-7+12x+3=7x
Combine -28x^{2} and 12x^{2} to get -16x^{2}.
40x-16x^{2}-7+3=7x
Combine 28x and 12x to get 40x.
40x-16x^{2}-4=7x
Add -7 and 3 to get -4.
40x-16x^{2}-4-7x=0
Subtract 7x from both sides.
33x-16x^{2}-4=0
Combine 40x and -7x to get 33x.
-16x^{2}+33x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-33±\sqrt{33^{2}-4\left(-16\right)\left(-4\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 33 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-33±\sqrt{1089-4\left(-16\right)\left(-4\right)}}{2\left(-16\right)}
Square 33.
x=\frac{-33±\sqrt{1089+64\left(-4\right)}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-33±\sqrt{1089-256}}{2\left(-16\right)}
Multiply 64 times -4.
x=\frac{-33±\sqrt{833}}{2\left(-16\right)}
Add 1089 to -256.
x=\frac{-33±7\sqrt{17}}{2\left(-16\right)}
Take the square root of 833.
x=\frac{-33±7\sqrt{17}}{-32}
Multiply 2 times -16.
x=\frac{7\sqrt{17}-33}{-32}
Now solve the equation x=\frac{-33±7\sqrt{17}}{-32} when ± is plus. Add -33 to 7\sqrt{17}.
x=\frac{33-7\sqrt{17}}{32}
Divide -33+7\sqrt{17} by -32.
x=\frac{-7\sqrt{17}-33}{-32}
Now solve the equation x=\frac{-33±7\sqrt{17}}{-32} when ± is minus. Subtract 7\sqrt{17} from -33.
x=\frac{7\sqrt{17}+33}{32}
Divide -33-7\sqrt{17} by -32.
x=\frac{33-7\sqrt{17}}{32} x=\frac{7\sqrt{17}+33}{32}
The equation is now solved.
\left(14x-7\right)\left(1-2x\right)+\left(6x+3\right)\left(2x+1\right)=7x
Variable x cannot be equal to any of the values -\frac{1}{2},0,\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by 21x\left(2x-1\right)\left(2x+1\right), the least common multiple of 6x^{2}+3x,14x^{2}-7x,12x^{2}-3.
28x-28x^{2}-7+\left(6x+3\right)\left(2x+1\right)=7x
Use the distributive property to multiply 14x-7 by 1-2x and combine like terms.
28x-28x^{2}-7+12x^{2}+12x+3=7x
Use the distributive property to multiply 6x+3 by 2x+1 and combine like terms.
28x-16x^{2}-7+12x+3=7x
Combine -28x^{2} and 12x^{2} to get -16x^{2}.
40x-16x^{2}-7+3=7x
Combine 28x and 12x to get 40x.
40x-16x^{2}-4=7x
Add -7 and 3 to get -4.
40x-16x^{2}-4-7x=0
Subtract 7x from both sides.
33x-16x^{2}-4=0
Combine 40x and -7x to get 33x.
33x-16x^{2}=4
Add 4 to both sides. Anything plus zero gives itself.
-16x^{2}+33x=4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16x^{2}+33x}{-16}=\frac{4}{-16}
Divide both sides by -16.
x^{2}+\frac{33}{-16}x=\frac{4}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-\frac{33}{16}x=\frac{4}{-16}
Divide 33 by -16.
x^{2}-\frac{33}{16}x=-\frac{1}{4}
Reduce the fraction \frac{4}{-16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{33}{16}x+\left(-\frac{33}{32}\right)^{2}=-\frac{1}{4}+\left(-\frac{33}{32}\right)^{2}
Divide -\frac{33}{16}, the coefficient of the x term, by 2 to get -\frac{33}{32}. Then add the square of -\frac{33}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{33}{16}x+\frac{1089}{1024}=-\frac{1}{4}+\frac{1089}{1024}
Square -\frac{33}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{33}{16}x+\frac{1089}{1024}=\frac{833}{1024}
Add -\frac{1}{4} to \frac{1089}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{33}{32}\right)^{2}=\frac{833}{1024}
Factor x^{2}-\frac{33}{16}x+\frac{1089}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{33}{32}\right)^{2}}=\sqrt{\frac{833}{1024}}
Take the square root of both sides of the equation.
x-\frac{33}{32}=\frac{7\sqrt{17}}{32} x-\frac{33}{32}=-\frac{7\sqrt{17}}{32}
Simplify.
x=\frac{7\sqrt{17}+33}{32} x=\frac{33-7\sqrt{17}}{32}
Add \frac{33}{32} to both sides of the equation.