Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-2x+1}{\left(2x-1\right)\left(2x+1\right)}-\frac{x+4}{2x^{2}-3x+1}+\frac{1}{1-x}
Factor the expressions that are not already factored in \frac{1-2x}{4x^{2}-1}.
\frac{-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}-\frac{x+4}{2x^{2}-3x+1}+\frac{1}{1-x}
Extract the negative sign in 1-2x.
\frac{-1}{2x+1}-\frac{x+4}{2x^{2}-3x+1}+\frac{1}{1-x}
Cancel out 2x-1 in both numerator and denominator.
\frac{-1}{2x+1}-\frac{x+4}{\left(x-1\right)\left(2x-1\right)}+\frac{1}{1-x}
Factor 2x^{2}-3x+1.
\frac{-\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}-\frac{\left(x+4\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x+1 and \left(x-1\right)\left(2x-1\right) is \left(x-1\right)\left(2x-1\right)\left(2x+1\right). Multiply \frac{-1}{2x+1} times \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}. Multiply \frac{x+4}{\left(x-1\right)\left(2x-1\right)} times \frac{2x+1}{2x+1}.
\frac{-\left(x-1\right)\left(2x-1\right)-\left(x+4\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
Since \frac{-\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} and \frac{\left(x+4\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{2}+x+2x-1-2x^{2}-x-8x-4}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
Do the multiplications in -\left(x-1\right)\left(2x-1\right)-\left(x+4\right)\left(2x+1\right).
\frac{-4x^{2}-6x-5}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
Combine like terms in -2x^{2}+x+2x-1-2x^{2}-x-8x-4.
\frac{-4x^{2}-6x-5}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{-\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(2x-1\right)\left(2x+1\right) and 1-x is \left(x-1\right)\left(2x-1\right)\left(2x+1\right). Multiply \frac{1}{1-x} times \frac{-\left(2x-1\right)\left(2x+1\right)}{-\left(2x-1\right)\left(2x+1\right)}.
\frac{-4x^{2}-6x-5-\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
Since \frac{-4x^{2}-6x-5}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} and \frac{-\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} have the same denominator, add them by adding their numerators.
\frac{-4x^{2}-6x-5-4x^{2}-2x+2x+1}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
Do the multiplications in -4x^{2}-6x-5-\left(2x-1\right)\left(2x+1\right).
\frac{-8x^{2}-6x-4}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
Combine like terms in -4x^{2}-6x-5-4x^{2}-2x+2x+1.
\frac{-8x^{2}-6x-4}{4x^{3}-4x^{2}-x+1}
Expand \left(x-1\right)\left(2x-1\right)\left(2x+1\right).
\frac{-2x+1}{\left(2x-1\right)\left(2x+1\right)}-\frac{x+4}{2x^{2}-3x+1}+\frac{1}{1-x}
Factor the expressions that are not already factored in \frac{1-2x}{4x^{2}-1}.
\frac{-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}-\frac{x+4}{2x^{2}-3x+1}+\frac{1}{1-x}
Extract the negative sign in 1-2x.
\frac{-1}{2x+1}-\frac{x+4}{2x^{2}-3x+1}+\frac{1}{1-x}
Cancel out 2x-1 in both numerator and denominator.
\frac{-1}{2x+1}-\frac{x+4}{\left(x-1\right)\left(2x-1\right)}+\frac{1}{1-x}
Factor 2x^{2}-3x+1.
\frac{-\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}-\frac{\left(x+4\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x+1 and \left(x-1\right)\left(2x-1\right) is \left(x-1\right)\left(2x-1\right)\left(2x+1\right). Multiply \frac{-1}{2x+1} times \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}. Multiply \frac{x+4}{\left(x-1\right)\left(2x-1\right)} times \frac{2x+1}{2x+1}.
\frac{-\left(x-1\right)\left(2x-1\right)-\left(x+4\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
Since \frac{-\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} and \frac{\left(x+4\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{2}+x+2x-1-2x^{2}-x-8x-4}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
Do the multiplications in -\left(x-1\right)\left(2x-1\right)-\left(x+4\right)\left(2x+1\right).
\frac{-4x^{2}-6x-5}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
Combine like terms in -2x^{2}+x+2x-1-2x^{2}-x-8x-4.
\frac{-4x^{2}-6x-5}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{-\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(2x-1\right)\left(2x+1\right) and 1-x is \left(x-1\right)\left(2x-1\right)\left(2x+1\right). Multiply \frac{1}{1-x} times \frac{-\left(2x-1\right)\left(2x+1\right)}{-\left(2x-1\right)\left(2x+1\right)}.
\frac{-4x^{2}-6x-5-\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
Since \frac{-4x^{2}-6x-5}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} and \frac{-\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} have the same denominator, add them by adding their numerators.
\frac{-4x^{2}-6x-5-4x^{2}-2x+2x+1}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
Do the multiplications in -4x^{2}-6x-5-\left(2x-1\right)\left(2x+1\right).
\frac{-8x^{2}-6x-4}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
Combine like terms in -4x^{2}-6x-5-4x^{2}-2x+2x+1.
\frac{-8x^{2}-6x-4}{4x^{3}-4x^{2}-x+1}
Expand \left(x-1\right)\left(2x-1\right)\left(2x+1\right).