Evaluate
\frac{2\left(4x^{2}+3x+2\right)}{\left(1-x\right)\left(4x^{2}-1\right)}
Expand
\frac{2\left(4x^{2}+3x+2\right)}{\left(1-x\right)\left(4x^{2}-1\right)}
Graph
Share
Copied to clipboard
\frac{-2x+1}{\left(2x-1\right)\left(2x+1\right)}-\frac{x+4}{2x^{2}-3x+1}+\frac{1}{1-x}
Factor the expressions that are not already factored in \frac{1-2x}{4x^{2}-1}.
\frac{-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}-\frac{x+4}{2x^{2}-3x+1}+\frac{1}{1-x}
Extract the negative sign in 1-2x.
\frac{-1}{2x+1}-\frac{x+4}{2x^{2}-3x+1}+\frac{1}{1-x}
Cancel out 2x-1 in both numerator and denominator.
\frac{-1}{2x+1}-\frac{x+4}{\left(x-1\right)\left(2x-1\right)}+\frac{1}{1-x}
Factor 2x^{2}-3x+1.
\frac{-\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}-\frac{\left(x+4\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x+1 and \left(x-1\right)\left(2x-1\right) is \left(x-1\right)\left(2x-1\right)\left(2x+1\right). Multiply \frac{-1}{2x+1} times \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}. Multiply \frac{x+4}{\left(x-1\right)\left(2x-1\right)} times \frac{2x+1}{2x+1}.
\frac{-\left(x-1\right)\left(2x-1\right)-\left(x+4\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
Since \frac{-\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} and \frac{\left(x+4\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{2}+x+2x-1-2x^{2}-x-8x-4}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
Do the multiplications in -\left(x-1\right)\left(2x-1\right)-\left(x+4\right)\left(2x+1\right).
\frac{-4x^{2}-6x-5}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
Combine like terms in -2x^{2}+x+2x-1-2x^{2}-x-8x-4.
\frac{-4x^{2}-6x-5}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{-\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(2x-1\right)\left(2x+1\right) and 1-x is \left(x-1\right)\left(2x-1\right)\left(2x+1\right). Multiply \frac{1}{1-x} times \frac{-\left(2x-1\right)\left(2x+1\right)}{-\left(2x-1\right)\left(2x+1\right)}.
\frac{-4x^{2}-6x-5-\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
Since \frac{-4x^{2}-6x-5}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} and \frac{-\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} have the same denominator, add them by adding their numerators.
\frac{-4x^{2}-6x-5-4x^{2}-2x+2x+1}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
Do the multiplications in -4x^{2}-6x-5-\left(2x-1\right)\left(2x+1\right).
\frac{-8x^{2}-6x-4}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
Combine like terms in -4x^{2}-6x-5-4x^{2}-2x+2x+1.
\frac{-8x^{2}-6x-4}{4x^{3}-4x^{2}-x+1}
Expand \left(x-1\right)\left(2x-1\right)\left(2x+1\right).
\frac{-2x+1}{\left(2x-1\right)\left(2x+1\right)}-\frac{x+4}{2x^{2}-3x+1}+\frac{1}{1-x}
Factor the expressions that are not already factored in \frac{1-2x}{4x^{2}-1}.
\frac{-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}-\frac{x+4}{2x^{2}-3x+1}+\frac{1}{1-x}
Extract the negative sign in 1-2x.
\frac{-1}{2x+1}-\frac{x+4}{2x^{2}-3x+1}+\frac{1}{1-x}
Cancel out 2x-1 in both numerator and denominator.
\frac{-1}{2x+1}-\frac{x+4}{\left(x-1\right)\left(2x-1\right)}+\frac{1}{1-x}
Factor 2x^{2}-3x+1.
\frac{-\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}-\frac{\left(x+4\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x+1 and \left(x-1\right)\left(2x-1\right) is \left(x-1\right)\left(2x-1\right)\left(2x+1\right). Multiply \frac{-1}{2x+1} times \frac{\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)}. Multiply \frac{x+4}{\left(x-1\right)\left(2x-1\right)} times \frac{2x+1}{2x+1}.
\frac{-\left(x-1\right)\left(2x-1\right)-\left(x+4\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
Since \frac{-\left(x-1\right)\left(2x-1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} and \frac{\left(x+4\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{2}+x+2x-1-2x^{2}-x-8x-4}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
Do the multiplications in -\left(x-1\right)\left(2x-1\right)-\left(x+4\right)\left(2x+1\right).
\frac{-4x^{2}-6x-5}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{1}{1-x}
Combine like terms in -2x^{2}+x+2x-1-2x^{2}-x-8x-4.
\frac{-4x^{2}-6x-5}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}+\frac{-\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(2x-1\right)\left(2x+1\right) and 1-x is \left(x-1\right)\left(2x-1\right)\left(2x+1\right). Multiply \frac{1}{1-x} times \frac{-\left(2x-1\right)\left(2x+1\right)}{-\left(2x-1\right)\left(2x+1\right)}.
\frac{-4x^{2}-6x-5-\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
Since \frac{-4x^{2}-6x-5}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} and \frac{-\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)} have the same denominator, add them by adding their numerators.
\frac{-4x^{2}-6x-5-4x^{2}-2x+2x+1}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
Do the multiplications in -4x^{2}-6x-5-\left(2x-1\right)\left(2x+1\right).
\frac{-8x^{2}-6x-4}{\left(x-1\right)\left(2x-1\right)\left(2x+1\right)}
Combine like terms in -4x^{2}-6x-5-4x^{2}-2x+2x+1.
\frac{-8x^{2}-6x-4}{4x^{3}-4x^{2}-x+1}
Expand \left(x-1\right)\left(2x-1\right)\left(2x+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}