Solve for x
x = \frac{53}{25} = 2\frac{3}{25} = 2.12
Graph
Share
Copied to clipboard
8\left(1-2x\right)=3\left(3x+1\right)-48
Multiply both sides of the equation by 24, the least common multiple of 3,8.
8-16x=3\left(3x+1\right)-48
Use the distributive property to multiply 8 by 1-2x.
8-16x=9x+3-48
Use the distributive property to multiply 3 by 3x+1.
8-16x=9x-45
Subtract 48 from 3 to get -45.
8-16x-9x=-45
Subtract 9x from both sides.
8-25x=-45
Combine -16x and -9x to get -25x.
-25x=-45-8
Subtract 8 from both sides.
-25x=-53
Subtract 8 from -45 to get -53.
x=\frac{-53}{-25}
Divide both sides by -25.
x=\frac{53}{25}
Fraction \frac{-53}{-25} can be simplified to \frac{53}{25} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}