Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1-2x}{\left(x-2\right)\left(2x-5\right)}+\frac{x-5}{x-2}-\frac{x+1}{2x-5}
Factor 2x^{2}-9x+10.
\frac{1-2x}{\left(x-2\right)\left(2x-5\right)}+\frac{\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(2x-5\right) and x-2 is \left(x-2\right)\left(2x-5\right). Multiply \frac{x-5}{x-2} times \frac{2x-5}{2x-5}.
\frac{1-2x+\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Since \frac{1-2x}{\left(x-2\right)\left(2x-5\right)} and \frac{\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)} have the same denominator, add them by adding their numerators.
\frac{1-2x+2x^{2}-5x-10x+25}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Do the multiplications in 1-2x+\left(x-5\right)\left(2x-5\right).
\frac{26-17x+2x^{2}}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Combine like terms in 1-2x+2x^{2}-5x-10x+25.
\frac{\left(x-2\right)\left(2x-13\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Factor the expressions that are not already factored in \frac{26-17x+2x^{2}}{\left(x-2\right)\left(2x-5\right)}.
\frac{2x-13}{2x-5}-\frac{x+1}{2x-5}
Cancel out x-2 in both numerator and denominator.
\frac{2x-13-\left(x+1\right)}{2x-5}
Since \frac{2x-13}{2x-5} and \frac{x+1}{2x-5} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-13-x-1}{2x-5}
Do the multiplications in 2x-13-\left(x+1\right).
\frac{x-14}{2x-5}
Combine like terms in 2x-13-x-1.
\frac{1-2x}{\left(x-2\right)\left(2x-5\right)}+\frac{x-5}{x-2}-\frac{x+1}{2x-5}
Factor 2x^{2}-9x+10.
\frac{1-2x}{\left(x-2\right)\left(2x-5\right)}+\frac{\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)\left(2x-5\right) and x-2 is \left(x-2\right)\left(2x-5\right). Multiply \frac{x-5}{x-2} times \frac{2x-5}{2x-5}.
\frac{1-2x+\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Since \frac{1-2x}{\left(x-2\right)\left(2x-5\right)} and \frac{\left(x-5\right)\left(2x-5\right)}{\left(x-2\right)\left(2x-5\right)} have the same denominator, add them by adding their numerators.
\frac{1-2x+2x^{2}-5x-10x+25}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Do the multiplications in 1-2x+\left(x-5\right)\left(2x-5\right).
\frac{26-17x+2x^{2}}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Combine like terms in 1-2x+2x^{2}-5x-10x+25.
\frac{\left(x-2\right)\left(2x-13\right)}{\left(x-2\right)\left(2x-5\right)}-\frac{x+1}{2x-5}
Factor the expressions that are not already factored in \frac{26-17x+2x^{2}}{\left(x-2\right)\left(2x-5\right)}.
\frac{2x-13}{2x-5}-\frac{x+1}{2x-5}
Cancel out x-2 in both numerator and denominator.
\frac{2x-13-\left(x+1\right)}{2x-5}
Since \frac{2x-13}{2x-5} and \frac{x+1}{2x-5} have the same denominator, subtract them by subtracting their numerators.
\frac{2x-13-x-1}{2x-5}
Do the multiplications in 2x-13-\left(x+1\right).
\frac{x-14}{2x-5}
Combine like terms in 2x-13-x-1.