Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-2i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 2-i.
\frac{\left(1-2i\right)\left(2-i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-2i\right)\left(2-i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 2+1\left(-i\right)-2i\times 2-2\left(-1\right)i^{2}}{5}
Multiply complex numbers 1-2i and 2-i like you multiply binomials.
\frac{1\times 2+1\left(-i\right)-2i\times 2-2\left(-1\right)\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{2-i-4i-2}{5}
Do the multiplications in 1\times 2+1\left(-i\right)-2i\times 2-2\left(-1\right)\left(-1\right).
\frac{2-2+\left(-1-4\right)i}{5}
Combine the real and imaginary parts in 2-i-4i-2.
\frac{-5i}{5}
Do the additions in 2-2+\left(-1-4\right)i.
-i
Divide -5i by 5 to get -i.
Re(\frac{\left(1-2i\right)\left(2-i\right)}{\left(2+i\right)\left(2-i\right)})
Multiply both numerator and denominator of \frac{1-2i}{2+i} by the complex conjugate of the denominator, 2-i.
Re(\frac{\left(1-2i\right)\left(2-i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1-2i\right)\left(2-i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 2+1\left(-i\right)-2i\times 2-2\left(-1\right)i^{2}}{5})
Multiply complex numbers 1-2i and 2-i like you multiply binomials.
Re(\frac{1\times 2+1\left(-i\right)-2i\times 2-2\left(-1\right)\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{2-i-4i-2}{5})
Do the multiplications in 1\times 2+1\left(-i\right)-2i\times 2-2\left(-1\right)\left(-1\right).
Re(\frac{2-2+\left(-1-4\right)i}{5})
Combine the real and imaginary parts in 2-i-4i-2.
Re(\frac{-5i}{5})
Do the additions in 2-2+\left(-1-4\right)i.
Re(-i)
Divide -5i by 5 to get -i.
0
The real part of -i is 0.