Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-2i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 1-2i.
\frac{\left(1-2i\right)\left(1-2i\right)}{1^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-2i\right)\left(1-2i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)i^{2}}{5}
Multiply complex numbers 1-2i and 1-2i like you multiply binomials.
\frac{1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)\left(-1\right)}{5}
By definition, i^{2} is -1.
\frac{1-2i-2i-4}{5}
Do the multiplications in 1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)\left(-1\right).
\frac{1-4+\left(-2-2\right)i}{5}
Combine the real and imaginary parts in 1-2i-2i-4.
\frac{-3-4i}{5}
Do the additions in 1-4+\left(-2-2\right)i.
-\frac{3}{5}-\frac{4}{5}i
Divide -3-4i by 5 to get -\frac{3}{5}-\frac{4}{5}i.
Re(\frac{\left(1-2i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)})
Multiply both numerator and denominator of \frac{1-2i}{1+2i} by the complex conjugate of the denominator, 1-2i.
Re(\frac{\left(1-2i\right)\left(1-2i\right)}{1^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1-2i\right)\left(1-2i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)i^{2}}{5})
Multiply complex numbers 1-2i and 1-2i like you multiply binomials.
Re(\frac{1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)\left(-1\right)}{5})
By definition, i^{2} is -1.
Re(\frac{1-2i-2i-4}{5})
Do the multiplications in 1\times 1+1\times \left(-2i\right)-2i-2\left(-2\right)\left(-1\right).
Re(\frac{1-4+\left(-2-2\right)i}{5})
Combine the real and imaginary parts in 1-2i-2i-4.
Re(\frac{-3-4i}{5})
Do the additions in 1-4+\left(-2-2\right)i.
Re(-\frac{3}{5}-\frac{4}{5}i)
Divide -3-4i by 5 to get -\frac{3}{5}-\frac{4}{5}i.
-\frac{3}{5}
The real part of -\frac{3}{5}-\frac{4}{5}i is -\frac{3}{5}.