Evaluate
\frac{k^{2}-2}{k^{2}+1}
Expand
\frac{k^{2}-2}{k^{2}+1}
Share
Copied to clipboard
\frac{1-\frac{2}{k^{2}}}{1+\frac{1}{k^{2}}}
Express 2\times \frac{1}{k^{2}} as a single fraction.
\frac{\frac{k^{2}}{k^{2}}-\frac{2}{k^{2}}}{1+\frac{1}{k^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{k^{2}}{k^{2}}.
\frac{\frac{k^{2}-2}{k^{2}}}{1+\frac{1}{k^{2}}}
Since \frac{k^{2}}{k^{2}} and \frac{2}{k^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{k^{2}-2}{k^{2}}}{\frac{k^{2}}{k^{2}}+\frac{1}{k^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{k^{2}}{k^{2}}.
\frac{\frac{k^{2}-2}{k^{2}}}{\frac{k^{2}+1}{k^{2}}}
Since \frac{k^{2}}{k^{2}} and \frac{1}{k^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(k^{2}-2\right)k^{2}}{k^{2}\left(k^{2}+1\right)}
Divide \frac{k^{2}-2}{k^{2}} by \frac{k^{2}+1}{k^{2}} by multiplying \frac{k^{2}-2}{k^{2}} by the reciprocal of \frac{k^{2}+1}{k^{2}}.
\frac{k^{2}-2}{k^{2}+1}
Cancel out k^{2} in both numerator and denominator.
\frac{1-\frac{2}{k^{2}}}{1+\frac{1}{k^{2}}}
Express 2\times \frac{1}{k^{2}} as a single fraction.
\frac{\frac{k^{2}}{k^{2}}-\frac{2}{k^{2}}}{1+\frac{1}{k^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{k^{2}}{k^{2}}.
\frac{\frac{k^{2}-2}{k^{2}}}{1+\frac{1}{k^{2}}}
Since \frac{k^{2}}{k^{2}} and \frac{2}{k^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{k^{2}-2}{k^{2}}}{\frac{k^{2}}{k^{2}}+\frac{1}{k^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{k^{2}}{k^{2}}.
\frac{\frac{k^{2}-2}{k^{2}}}{\frac{k^{2}+1}{k^{2}}}
Since \frac{k^{2}}{k^{2}} and \frac{1}{k^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(k^{2}-2\right)k^{2}}{k^{2}\left(k^{2}+1\right)}
Divide \frac{k^{2}-2}{k^{2}} by \frac{k^{2}+1}{k^{2}} by multiplying \frac{k^{2}-2}{k^{2}} by the reciprocal of \frac{k^{2}+1}{k^{2}}.
\frac{k^{2}-2}{k^{2}+1}
Cancel out k^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}