Verify
false
Share
Copied to clipboard
\frac{1-0}{1-\frac{90\times 5+1}{5}}=\frac{1+0\times 5}{1-\frac{1}{2}}
Multiply 0 and 5 to get 0.
\frac{1}{1-\frac{90\times 5+1}{5}}=\frac{1+0\times 5}{1-\frac{1}{2}}
Subtract 0 from 1 to get 1.
\frac{1}{1-\frac{450+1}{5}}=\frac{1+0\times 5}{1-\frac{1}{2}}
Multiply 90 and 5 to get 450.
\frac{1}{1-\frac{451}{5}}=\frac{1+0\times 5}{1-\frac{1}{2}}
Add 450 and 1 to get 451.
\frac{1}{\frac{5}{5}-\frac{451}{5}}=\frac{1+0\times 5}{1-\frac{1}{2}}
Convert 1 to fraction \frac{5}{5}.
\frac{1}{\frac{5-451}{5}}=\frac{1+0\times 5}{1-\frac{1}{2}}
Since \frac{5}{5} and \frac{451}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{-\frac{446}{5}}=\frac{1+0\times 5}{1-\frac{1}{2}}
Subtract 451 from 5 to get -446.
1\left(-\frac{5}{446}\right)=\frac{1+0\times 5}{1-\frac{1}{2}}
Divide 1 by -\frac{446}{5} by multiplying 1 by the reciprocal of -\frac{446}{5}.
-\frac{5}{446}=\frac{1+0\times 5}{1-\frac{1}{2}}
Multiply 1 and -\frac{5}{446} to get -\frac{5}{446}.
-\frac{5}{446}=\frac{1+0}{1-\frac{1}{2}}
Multiply 0 and 5 to get 0.
-\frac{5}{446}=\frac{1}{1-\frac{1}{2}}
Add 1 and 0 to get 1.
-\frac{5}{446}=\frac{1}{\frac{2}{2}-\frac{1}{2}}
Convert 1 to fraction \frac{2}{2}.
-\frac{5}{446}=\frac{1}{\frac{2-1}{2}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{446}=\frac{1}{\frac{1}{2}}
Subtract 1 from 2 to get 1.
-\frac{5}{446}=1\times 2
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
-\frac{5}{446}=2
Multiply 1 and 2 to get 2.
-\frac{5}{446}=\frac{892}{446}
Convert 2 to fraction \frac{892}{446}.
\text{false}
Compare -\frac{5}{446} and \frac{892}{446}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}