\frac { 1 - 0,5 } { 1 - 90 \frac { 1 } { 5 } } = \frac { 1 + 0,5 } { 1 - \frac { 1 } { 2 } }
Verify
false
Share
Copied to clipboard
\frac{0,5}{1-\frac{90\times 5+1}{5}}=\frac{1+0,5}{1-\frac{1}{2}}
Subtract 0,5 from 1 to get 0,5.
\frac{0,5}{1-\frac{450+1}{5}}=\frac{1+0,5}{1-\frac{1}{2}}
Multiply 90 and 5 to get 450.
\frac{0,5}{1-\frac{451}{5}}=\frac{1+0,5}{1-\frac{1}{2}}
Add 450 and 1 to get 451.
\frac{0,5}{\frac{5}{5}-\frac{451}{5}}=\frac{1+0,5}{1-\frac{1}{2}}
Convert 1 to fraction \frac{5}{5}.
\frac{0,5}{\frac{5-451}{5}}=\frac{1+0,5}{1-\frac{1}{2}}
Since \frac{5}{5} and \frac{451}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{0,5}{-\frac{446}{5}}=\frac{1+0,5}{1-\frac{1}{2}}
Subtract 451 from 5 to get -446.
0,5\left(-\frac{5}{446}\right)=\frac{1+0,5}{1-\frac{1}{2}}
Divide 0,5 by -\frac{446}{5} by multiplying 0,5 by the reciprocal of -\frac{446}{5}.
\frac{1}{2}\left(-\frac{5}{446}\right)=\frac{1+0,5}{1-\frac{1}{2}}
Convert decimal number 0,5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1\left(-5\right)}{2\times 446}=\frac{1+0,5}{1-\frac{1}{2}}
Multiply \frac{1}{2} times -\frac{5}{446} by multiplying numerator times numerator and denominator times denominator.
\frac{-5}{892}=\frac{1+0,5}{1-\frac{1}{2}}
Do the multiplications in the fraction \frac{1\left(-5\right)}{2\times 446}.
-\frac{5}{892}=\frac{1+0,5}{1-\frac{1}{2}}
Fraction \frac{-5}{892} can be rewritten as -\frac{5}{892} by extracting the negative sign.
-\frac{5}{892}=\frac{1,5}{1-\frac{1}{2}}
Add 1 and 0,5 to get 1,5.
-\frac{5}{892}=\frac{1,5}{\frac{2}{2}-\frac{1}{2}}
Convert 1 to fraction \frac{2}{2}.
-\frac{5}{892}=\frac{1,5}{\frac{2-1}{2}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{892}=\frac{1,5}{\frac{1}{2}}
Subtract 1 from 2 to get 1.
-\frac{5}{892}=1,5\times 2
Divide 1,5 by \frac{1}{2} by multiplying 1,5 by the reciprocal of \frac{1}{2}.
-\frac{5}{892}=3
Multiply 1,5 and 2 to get 3.
-\frac{5}{892}=\frac{2676}{892}
Convert 3 to fraction \frac{2676}{892}.
\text{false}
Compare -\frac{5}{892} and \frac{2676}{892}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}