\frac { 1 - 0,5 } { 0,75 } + \frac { 1,5 - 1 } { 2 - 0,25 }
Evaluate
\frac{20}{21}\approx 0,952380952
Factor
\frac{5 \cdot 2 ^ {2}}{3 \cdot 7} = 0.9523809523809523
Share
Copied to clipboard
\frac{0,5}{0,75}+\frac{1,5-1}{2-0,25}
Subtract 0,5 from 1 to get 0,5.
\frac{50}{75}+\frac{1,5-1}{2-0,25}
Expand \frac{0,5}{0,75} by multiplying both numerator and the denominator by 100.
\frac{2}{3}+\frac{1,5-1}{2-0,25}
Reduce the fraction \frac{50}{75} to lowest terms by extracting and canceling out 25.
\frac{2}{3}+\frac{0,5}{2-0,25}
Subtract 1 from 1,5 to get 0,5.
\frac{2}{3}+\frac{0,5}{1,75}
Subtract 0,25 from 2 to get 1,75.
\frac{2}{3}+\frac{50}{175}
Expand \frac{0,5}{1,75} by multiplying both numerator and the denominator by 100.
\frac{2}{3}+\frac{2}{7}
Reduce the fraction \frac{50}{175} to lowest terms by extracting and canceling out 25.
\frac{14}{21}+\frac{6}{21}
Least common multiple of 3 and 7 is 21. Convert \frac{2}{3} and \frac{2}{7} to fractions with denominator 21.
\frac{14+6}{21}
Since \frac{14}{21} and \frac{6}{21} have the same denominator, add them by adding their numerators.
\frac{20}{21}
Add 14 and 6 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}