\frac { 1 - ( \frac { 1 } { 6 } - \frac { 1 } { 3 } ) } { ( \frac { 1 } { 6 } + \frac { 1 } { 2 } ) ^ { 2 } + \frac { 3 } { 2 } } é
Evaluate
\frac{3é}{5}
Expand
\frac{3é}{5}
Share
Copied to clipboard
\frac{1-\left(-\frac{1}{6}\right)}{\left(\frac{1}{6}+\frac{1}{2}\right)^{2}+\frac{3}{2}}é
Subtract \frac{1}{3} from \frac{1}{6} to get -\frac{1}{6}.
\frac{1+\frac{1}{6}}{\left(\frac{1}{6}+\frac{1}{2}\right)^{2}+\frac{3}{2}}é
The opposite of -\frac{1}{6} is \frac{1}{6}.
\frac{\frac{7}{6}}{\left(\frac{1}{6}+\frac{1}{2}\right)^{2}+\frac{3}{2}}é
Add 1 and \frac{1}{6} to get \frac{7}{6}.
\frac{\frac{7}{6}}{\left(\frac{2}{3}\right)^{2}+\frac{3}{2}}é
Add \frac{1}{6} and \frac{1}{2} to get \frac{2}{3}.
\frac{\frac{7}{6}}{\frac{4}{9}+\frac{3}{2}}é
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{7}{6}}{\frac{35}{18}}é
Add \frac{4}{9} and \frac{3}{2} to get \frac{35}{18}.
\frac{7}{6}\times \frac{18}{35}é
Divide \frac{7}{6} by \frac{35}{18} by multiplying \frac{7}{6} by the reciprocal of \frac{35}{18}.
\frac{3}{5}é
Multiply \frac{7}{6} and \frac{18}{35} to get \frac{3}{5}.
\frac{1-\left(-\frac{1}{6}\right)}{\left(\frac{1}{6}+\frac{1}{2}\right)^{2}+\frac{3}{2}}é
Subtract \frac{1}{3} from \frac{1}{6} to get -\frac{1}{6}.
\frac{1+\frac{1}{6}}{\left(\frac{1}{6}+\frac{1}{2}\right)^{2}+\frac{3}{2}}é
The opposite of -\frac{1}{6} is \frac{1}{6}.
\frac{\frac{7}{6}}{\left(\frac{1}{6}+\frac{1}{2}\right)^{2}+\frac{3}{2}}é
Add 1 and \frac{1}{6} to get \frac{7}{6}.
\frac{\frac{7}{6}}{\left(\frac{2}{3}\right)^{2}+\frac{3}{2}}é
Add \frac{1}{6} and \frac{1}{2} to get \frac{2}{3}.
\frac{\frac{7}{6}}{\frac{4}{9}+\frac{3}{2}}é
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{7}{6}}{\frac{35}{18}}é
Add \frac{4}{9} and \frac{3}{2} to get \frac{35}{18}.
\frac{7}{6}\times \frac{18}{35}é
Divide \frac{7}{6} by \frac{35}{18} by multiplying \frac{7}{6} by the reciprocal of \frac{35}{18}.
\frac{3}{5}é
Multiply \frac{7}{6} and \frac{18}{35} to get \frac{3}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}