Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-\sqrt{5}\right)\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}
Rationalize the denominator of \frac{1-\sqrt{5}}{1+\sqrt{5}} by multiplying numerator and denominator by 1-\sqrt{5}.
\frac{\left(1-\sqrt{5}\right)\left(1-\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-\sqrt{5}\right)\left(1-\sqrt{5}\right)}{1-5}
Square 1. Square \sqrt{5}.
\frac{\left(1-\sqrt{5}\right)\left(1-\sqrt{5}\right)}{-4}
Subtract 5 from 1 to get -4.
\frac{\left(1-\sqrt{5}\right)^{2}}{-4}
Multiply 1-\sqrt{5} and 1-\sqrt{5} to get \left(1-\sqrt{5}\right)^{2}.
\frac{1-2\sqrt{5}+\left(\sqrt{5}\right)^{2}}{-4}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{5}\right)^{2}.
\frac{1-2\sqrt{5}+5}{-4}
The square of \sqrt{5} is 5.
\frac{6-2\sqrt{5}}{-4}
Add 1 and 5 to get 6.