Evaluate
\frac{-\sqrt{3}i-1}{4}\approx -0.25-0.433012702i
Real Part
-\frac{1}{4} = -0.25
Quiz
Complex Number
5 problems similar to:
\frac { 1 - \sqrt { 3 } i } { ( \sqrt { 3 } + i ) ^ { 2 } }
Share
Copied to clipboard
\frac{1-i\sqrt{3}}{\left(\sqrt{3}\right)^{2}+2i\sqrt{3}-1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+i\right)^{2}.
\frac{1-i\sqrt{3}}{3+2i\sqrt{3}-1}
The square of \sqrt{3} is 3.
\frac{1-i\sqrt{3}}{2+2i\sqrt{3}}
Subtract 1 from 3 to get 2.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{\left(2+2i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}
Rationalize the denominator of \frac{1-i\sqrt{3}}{2+2i\sqrt{3}} by multiplying numerator and denominator by 2-2i\sqrt{3}.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{2^{2}-\left(2i\sqrt{3}\right)^{2}}
Consider \left(2+2i\sqrt{3}\right)\left(2-2i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{4-\left(2i\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{4-\left(2i\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2i\sqrt{3}\right)^{2}.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{4-\left(-4\left(\sqrt{3}\right)^{2}\right)}
Calculate 2i to the power of 2 and get -4.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{4-\left(-4\times 3\right)}
The square of \sqrt{3} is 3.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{4-\left(-12\right)}
Multiply -4 and 3 to get -12.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{4+12}
Multiply -1 and -12 to get 12.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{16}
Add 4 and 12 to get 16.
\frac{2\left(1-i\sqrt{3}\right)-2i\left(1-i\sqrt{3}\right)\sqrt{3}}{16}
Use the distributive property to multiply 1-i\sqrt{3} by 2-2i\sqrt{3}.
\frac{2-2i\sqrt{3}-2i\left(1-i\sqrt{3}\right)\sqrt{3}}{16}
Use the distributive property to multiply 2 by 1-i\sqrt{3}.
\frac{2-2i\sqrt{3}+\left(-2i-2\sqrt{3}\right)\sqrt{3}}{16}
Use the distributive property to multiply -2i by 1-i\sqrt{3}.
\frac{2-2i\sqrt{3}-2i\sqrt{3}-2\left(\sqrt{3}\right)^{2}}{16}
Use the distributive property to multiply -2i-2\sqrt{3} by \sqrt{3}.
\frac{2-2i\sqrt{3}-2i\sqrt{3}-2\times 3}{16}
The square of \sqrt{3} is 3.
\frac{2-2i\sqrt{3}-2i\sqrt{3}-6}{16}
Multiply -2 and 3 to get -6.
\frac{2-4i\sqrt{3}-6}{16}
Combine -2i\sqrt{3} and -2i\sqrt{3} to get -4i\sqrt{3}.
\frac{-4-4i\sqrt{3}}{16}
Subtract 6 from 2 to get -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}