Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1-i\sqrt{3}}{\left(\sqrt{3}\right)^{2}+2i\sqrt{3}-1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+i\right)^{2}.
\frac{1-i\sqrt{3}}{3+2i\sqrt{3}-1}
The square of \sqrt{3} is 3.
\frac{1-i\sqrt{3}}{2+2i\sqrt{3}}
Subtract 1 from 3 to get 2.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{\left(2+2i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}
Rationalize the denominator of \frac{1-i\sqrt{3}}{2+2i\sqrt{3}} by multiplying numerator and denominator by 2-2i\sqrt{3}.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{2^{2}-\left(2i\sqrt{3}\right)^{2}}
Consider \left(2+2i\sqrt{3}\right)\left(2-2i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{4-\left(2i\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{4-\left(2i\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(2i\sqrt{3}\right)^{2}.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{4-\left(-4\left(\sqrt{3}\right)^{2}\right)}
Calculate 2i to the power of 2 and get -4.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{4-\left(-4\times 3\right)}
The square of \sqrt{3} is 3.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{4-\left(-12\right)}
Multiply -4 and 3 to get -12.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{4+12}
Multiply -1 and -12 to get 12.
\frac{\left(1-i\sqrt{3}\right)\left(2-2i\sqrt{3}\right)}{16}
Add 4 and 12 to get 16.
\frac{2\left(1-i\sqrt{3}\right)-2i\left(1-i\sqrt{3}\right)\sqrt{3}}{16}
Use the distributive property to multiply 1-i\sqrt{3} by 2-2i\sqrt{3}.
\frac{2-2i\sqrt{3}-2i\left(1-i\sqrt{3}\right)\sqrt{3}}{16}
Use the distributive property to multiply 2 by 1-i\sqrt{3}.
\frac{2-2i\sqrt{3}+\left(-2i-2\sqrt{3}\right)\sqrt{3}}{16}
Use the distributive property to multiply -2i by 1-i\sqrt{3}.
\frac{2-2i\sqrt{3}-2i\sqrt{3}-2\left(\sqrt{3}\right)^{2}}{16}
Use the distributive property to multiply -2i-2\sqrt{3} by \sqrt{3}.
\frac{2-2i\sqrt{3}-2i\sqrt{3}-2\times 3}{16}
The square of \sqrt{3} is 3.
\frac{2-2i\sqrt{3}-2i\sqrt{3}-6}{16}
Multiply -2 and 3 to get -6.
\frac{2-4i\sqrt{3}-6}{16}
Combine -2i\sqrt{3} and -2i\sqrt{3} to get -4i\sqrt{3}.
\frac{-4-4i\sqrt{3}}{16}
Subtract 6 from 2 to get -4.