Evaluate
-3
Factor
-3
Share
Copied to clipboard
\frac{\left(1-\sqrt{2}\right)\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}-\frac{4\sqrt{6}}{\sqrt{12}}
Rationalize the denominator of \frac{1-\sqrt{2}}{1+\sqrt{2}} by multiplying numerator and denominator by 1-\sqrt{2}.
\frac{\left(1-\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1^{2}-\left(\sqrt{2}\right)^{2}}-\frac{4\sqrt{6}}{\sqrt{12}}
Consider \left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1-\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}-\frac{4\sqrt{6}}{\sqrt{12}}
Square 1. Square \sqrt{2}.
\frac{\left(1-\sqrt{2}\right)\left(1-\sqrt{2}\right)}{-1}-\frac{4\sqrt{6}}{\sqrt{12}}
Subtract 2 from 1 to get -1.
\frac{\left(1-\sqrt{2}\right)^{2}}{-1}-\frac{4\sqrt{6}}{\sqrt{12}}
Multiply 1-\sqrt{2} and 1-\sqrt{2} to get \left(1-\sqrt{2}\right)^{2}.
\frac{1-2\sqrt{2}+\left(\sqrt{2}\right)^{2}}{-1}-\frac{4\sqrt{6}}{\sqrt{12}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{2}\right)^{2}.
\frac{1-2\sqrt{2}+2}{-1}-\frac{4\sqrt{6}}{\sqrt{12}}
The square of \sqrt{2} is 2.
\frac{3-2\sqrt{2}}{-1}-\frac{4\sqrt{6}}{\sqrt{12}}
Add 1 and 2 to get 3.
-3-\left(-2\sqrt{2}\right)-\frac{4\sqrt{6}}{\sqrt{12}}
Anything divided by -1 gives its opposite. To find the opposite of 3-2\sqrt{2}, find the opposite of each term.
-3+2\sqrt{2}-\frac{4\sqrt{6}}{\sqrt{12}}
The opposite of -2\sqrt{2} is 2\sqrt{2}.
-3+2\sqrt{2}-\frac{4\sqrt{6}}{2\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
-3+2\sqrt{2}-\frac{2\sqrt{6}}{\sqrt{3}}
Cancel out 2 in both numerator and denominator.
-3+2\sqrt{2}-\frac{2\sqrt{6}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{6}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-3+2\sqrt{2}-\frac{2\sqrt{6}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
-3+2\sqrt{2}-\frac{2\sqrt{3}\sqrt{2}\sqrt{3}}{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
-3+2\sqrt{2}-\frac{2\times 3\sqrt{2}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
-3+2\sqrt{2}-2\sqrt{2}
Cancel out 3 and 3.
-3
Subtract 2\sqrt{2} from 2\sqrt{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}