Evaluate
\frac{3-\sqrt{6}}{2}\approx 0.275255129
Share
Copied to clipboard
\frac{1-\frac{\sqrt{2}}{\sqrt{3}}}{\frac{2}{3}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\frac{1-\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\frac{2}{3}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{1-\frac{\sqrt{2}\sqrt{3}}{3}}{\frac{2}{3}}
The square of \sqrt{3} is 3.
\frac{1-\frac{\sqrt{6}}{3}}{\frac{2}{3}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{3}{3}-\frac{\sqrt{6}}{3}}{\frac{2}{3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{\frac{3-\sqrt{6}}{3}}{\frac{2}{3}}
Since \frac{3}{3} and \frac{\sqrt{6}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(3-\sqrt{6}\right)\times 3}{3\times 2}
Divide \frac{3-\sqrt{6}}{3} by \frac{2}{3} by multiplying \frac{3-\sqrt{6}}{3} by the reciprocal of \frac{2}{3}.
\frac{-\sqrt{6}+3}{2}
Cancel out 3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}