Evaluate
\frac{4}{3}\approx 1.333333333
Share
Copied to clipboard
\frac{1-\left(\frac{\sqrt{2}}{2}\right)^{2}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
Get the value of \sin(45) from trigonometric values table.
\frac{1-\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{1-\frac{2}{2^{2}}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
The square of \sqrt{2} is 2.
\frac{1-\frac{2}{4}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
Calculate 2 to the power of 2 and get 4.
\frac{1-\frac{1}{2}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{2}}{1+\left(\sin(45)\right)^{2}}+\left(\tan(45)\right)^{2}
Subtract \frac{1}{2} from 1 to get \frac{1}{2}.
\frac{\frac{1}{2}}{1+\left(\frac{\sqrt{2}}{2}\right)^{2}}+\left(\tan(45)\right)^{2}
Get the value of \sin(45) from trigonometric values table.
\frac{\frac{1}{2}}{1+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}+\left(\tan(45)\right)^{2}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{1}{2}}{\frac{2^{2}}{2^{2}}+\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}}+\left(\tan(45)\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2^{2}}{2^{2}}.
\frac{\frac{1}{2}}{\frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}}+\left(\tan(45)\right)^{2}
Since \frac{2^{2}}{2^{2}} and \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{2^{2}}{2\left(2^{2}+\left(\sqrt{2}\right)^{2}\right)}+\left(\tan(45)\right)^{2}
Divide \frac{1}{2} by \frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}} by multiplying \frac{1}{2} by the reciprocal of \frac{2^{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}.
\frac{2}{\left(\sqrt{2}\right)^{2}+2^{2}}+\left(\tan(45)\right)^{2}
Cancel out 2 in both numerator and denominator.
\frac{2}{2+2^{2}}+\left(\tan(45)\right)^{2}
The square of \sqrt{2} is 2.
\frac{2}{2+4}+\left(\tan(45)\right)^{2}
Calculate 2 to the power of 2 and get 4.
\frac{2}{6}+\left(\tan(45)\right)^{2}
Add 2 and 4 to get 6.
\frac{1}{3}+\left(\tan(45)\right)^{2}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{1}{3}+1^{2}
Get the value of \tan(45) from trigonometric values table.
\frac{1}{3}+1
Calculate 1 to the power of 2 and get 1.
\frac{4}{3}
Add \frac{1}{3} and 1 to get \frac{4}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}