Evaluate
\frac{x}{y-x}
Expand
\frac{x}{y-x}
Share
Copied to clipboard
\frac{\frac{x-y}{x-y}-\frac{x}{x-y}}{\frac{y}{x}-\frac{y}{x-y}}+\frac{x^{2}}{y^{2}-xy}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-y}{x-y}.
\frac{\frac{x-y-x}{x-y}}{\frac{y}{x}-\frac{y}{x-y}}+\frac{x^{2}}{y^{2}-xy}
Since \frac{x-y}{x-y} and \frac{x}{x-y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-y}{x-y}}{\frac{y}{x}-\frac{y}{x-y}}+\frac{x^{2}}{y^{2}-xy}
Combine like terms in x-y-x.
\frac{\frac{-y}{x-y}}{\frac{y\left(x-y\right)}{x\left(x-y\right)}-\frac{yx}{x\left(x-y\right)}}+\frac{x^{2}}{y^{2}-xy}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x-y is x\left(x-y\right). Multiply \frac{y}{x} times \frac{x-y}{x-y}. Multiply \frac{y}{x-y} times \frac{x}{x}.
\frac{\frac{-y}{x-y}}{\frac{y\left(x-y\right)-yx}{x\left(x-y\right)}}+\frac{x^{2}}{y^{2}-xy}
Since \frac{y\left(x-y\right)}{x\left(x-y\right)} and \frac{yx}{x\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-y}{x-y}}{\frac{yx-y^{2}-yx}{x\left(x-y\right)}}+\frac{x^{2}}{y^{2}-xy}
Do the multiplications in y\left(x-y\right)-yx.
\frac{\frac{-y}{x-y}}{\frac{-y^{2}}{x\left(x-y\right)}}+\frac{x^{2}}{y^{2}-xy}
Combine like terms in yx-y^{2}-yx.
\frac{-yx\left(x-y\right)}{\left(x-y\right)\left(-1\right)y^{2}}+\frac{x^{2}}{y^{2}-xy}
Divide \frac{-y}{x-y} by \frac{-y^{2}}{x\left(x-y\right)} by multiplying \frac{-y}{x-y} by the reciprocal of \frac{-y^{2}}{x\left(x-y\right)}.
\frac{x}{y}+\frac{x^{2}}{y^{2}-xy}
Cancel out -y\left(x-y\right) in both numerator and denominator.
\frac{x}{y}+\frac{x^{2}}{y\left(-x+y\right)}
Factor y^{2}-xy.
\frac{x\left(-x+y\right)}{y\left(-x+y\right)}+\frac{x^{2}}{y\left(-x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and y\left(-x+y\right) is y\left(-x+y\right). Multiply \frac{x}{y} times \frac{-x+y}{-x+y}.
\frac{x\left(-x+y\right)+x^{2}}{y\left(-x+y\right)}
Since \frac{x\left(-x+y\right)}{y\left(-x+y\right)} and \frac{x^{2}}{y\left(-x+y\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+yx+x^{2}}{y\left(-x+y\right)}
Do the multiplications in x\left(-x+y\right)+x^{2}.
\frac{yx}{y\left(-x+y\right)}
Combine like terms in -x^{2}+yx+x^{2}.
\frac{x}{-x+y}
Cancel out y in both numerator and denominator.
\frac{\frac{x-y}{x-y}-\frac{x}{x-y}}{\frac{y}{x}-\frac{y}{x-y}}+\frac{x^{2}}{y^{2}-xy}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-y}{x-y}.
\frac{\frac{x-y-x}{x-y}}{\frac{y}{x}-\frac{y}{x-y}}+\frac{x^{2}}{y^{2}-xy}
Since \frac{x-y}{x-y} and \frac{x}{x-y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-y}{x-y}}{\frac{y}{x}-\frac{y}{x-y}}+\frac{x^{2}}{y^{2}-xy}
Combine like terms in x-y-x.
\frac{\frac{-y}{x-y}}{\frac{y\left(x-y\right)}{x\left(x-y\right)}-\frac{yx}{x\left(x-y\right)}}+\frac{x^{2}}{y^{2}-xy}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x-y is x\left(x-y\right). Multiply \frac{y}{x} times \frac{x-y}{x-y}. Multiply \frac{y}{x-y} times \frac{x}{x}.
\frac{\frac{-y}{x-y}}{\frac{y\left(x-y\right)-yx}{x\left(x-y\right)}}+\frac{x^{2}}{y^{2}-xy}
Since \frac{y\left(x-y\right)}{x\left(x-y\right)} and \frac{yx}{x\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-y}{x-y}}{\frac{yx-y^{2}-yx}{x\left(x-y\right)}}+\frac{x^{2}}{y^{2}-xy}
Do the multiplications in y\left(x-y\right)-yx.
\frac{\frac{-y}{x-y}}{\frac{-y^{2}}{x\left(x-y\right)}}+\frac{x^{2}}{y^{2}-xy}
Combine like terms in yx-y^{2}-yx.
\frac{-yx\left(x-y\right)}{\left(x-y\right)\left(-1\right)y^{2}}+\frac{x^{2}}{y^{2}-xy}
Divide \frac{-y}{x-y} by \frac{-y^{2}}{x\left(x-y\right)} by multiplying \frac{-y}{x-y} by the reciprocal of \frac{-y^{2}}{x\left(x-y\right)}.
\frac{x}{y}+\frac{x^{2}}{y^{2}-xy}
Cancel out -y\left(x-y\right) in both numerator and denominator.
\frac{x}{y}+\frac{x^{2}}{y\left(-x+y\right)}
Factor y^{2}-xy.
\frac{x\left(-x+y\right)}{y\left(-x+y\right)}+\frac{x^{2}}{y\left(-x+y\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and y\left(-x+y\right) is y\left(-x+y\right). Multiply \frac{x}{y} times \frac{-x+y}{-x+y}.
\frac{x\left(-x+y\right)+x^{2}}{y\left(-x+y\right)}
Since \frac{x\left(-x+y\right)}{y\left(-x+y\right)} and \frac{x^{2}}{y\left(-x+y\right)} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+yx+x^{2}}{y\left(-x+y\right)}
Do the multiplications in x\left(-x+y\right)+x^{2}.
\frac{yx}{y\left(-x+y\right)}
Combine like terms in -x^{2}+yx+x^{2}.
\frac{x}{-x+y}
Cancel out y in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}