Solve for x
x=3
Graph
Share
Copied to clipboard
2\left(1-\frac{6-x}{3}\right)+4x-\left(\frac{x}{2}-\frac{3+x}{4}\right)=12
Multiply both sides of the equation by 4, the least common multiple of 2,4.
2+2\left(-\frac{6-x}{3}\right)+4x-\left(\frac{x}{2}-\frac{3+x}{4}\right)=12
Use the distributive property to multiply 2 by 1-\frac{6-x}{3}.
2+\frac{-2\left(6-x\right)}{3}+4x-\left(\frac{x}{2}-\frac{3+x}{4}\right)=12
Express 2\left(-\frac{6-x}{3}\right) as a single fraction.
2+\frac{-12+2x}{3}+4x-\left(\frac{x}{2}-\frac{3+x}{4}\right)=12
Use the distributive property to multiply -2 by 6-x.
2+\frac{-12+2x}{3}+4x-\left(\frac{2x}{4}-\frac{3+x}{4}\right)=12
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{x}{2} times \frac{2}{2}.
2+\frac{-12+2x}{3}+4x-\frac{2x-\left(3+x\right)}{4}=12
Since \frac{2x}{4} and \frac{3+x}{4} have the same denominator, subtract them by subtracting their numerators.
2+\frac{-12+2x}{3}+4x-\frac{2x-3-x}{4}=12
Do the multiplications in 2x-\left(3+x\right).
2+\frac{-12+2x}{3}+4x-\frac{x-3}{4}=12
Combine like terms in 2x-3-x.
2+\frac{4\left(-12+2x\right)}{12}+4x-\frac{3\left(x-3\right)}{12}=12
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 4 is 12. Multiply \frac{-12+2x}{3} times \frac{4}{4}. Multiply \frac{x-3}{4} times \frac{3}{3}.
2+\frac{4\left(-12+2x\right)-3\left(x-3\right)}{12}+4x=12
Since \frac{4\left(-12+2x\right)}{12} and \frac{3\left(x-3\right)}{12} have the same denominator, subtract them by subtracting their numerators.
2+\frac{-48+8x-3x+9}{12}+4x=12
Do the multiplications in 4\left(-12+2x\right)-3\left(x-3\right).
2+\frac{-39+5x}{12}+4x=12
Combine like terms in -48+8x-3x+9.
2-\frac{13}{4}+\frac{5}{12}x+4x=12
Divide each term of -39+5x by 12 to get -\frac{13}{4}+\frac{5}{12}x.
\frac{8}{4}-\frac{13}{4}+\frac{5}{12}x+4x=12
Convert 2 to fraction \frac{8}{4}.
\frac{8-13}{4}+\frac{5}{12}x+4x=12
Since \frac{8}{4} and \frac{13}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{4}+\frac{5}{12}x+4x=12
Subtract 13 from 8 to get -5.
-\frac{5}{4}+\frac{53}{12}x=12
Combine \frac{5}{12}x and 4x to get \frac{53}{12}x.
\frac{53}{12}x=12+\frac{5}{4}
Add \frac{5}{4} to both sides.
\frac{53}{12}x=\frac{48}{4}+\frac{5}{4}
Convert 12 to fraction \frac{48}{4}.
\frac{53}{12}x=\frac{48+5}{4}
Since \frac{48}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
\frac{53}{12}x=\frac{53}{4}
Add 48 and 5 to get 53.
x=\frac{53}{4}\times \frac{12}{53}
Multiply both sides by \frac{12}{53}, the reciprocal of \frac{53}{12}.
x=\frac{53\times 12}{4\times 53}
Multiply \frac{53}{4} times \frac{12}{53} by multiplying numerator times numerator and denominator times denominator.
x=\frac{12}{4}
Cancel out 53 in both numerator and denominator.
x=3
Divide 12 by 4 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}