Evaluate
\frac{1}{x+3}
Expand
\frac{1}{x+3}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 1 - \frac { 3 } { x + 6 } } { x + \frac { 9 } { x + 6 } }
Share
Copied to clipboard
\frac{\frac{x+6}{x+6}-\frac{3}{x+6}}{x+\frac{9}{x+6}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+6}{x+6}.
\frac{\frac{x+6-3}{x+6}}{x+\frac{9}{x+6}}
Since \frac{x+6}{x+6} and \frac{3}{x+6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x+3}{x+6}}{x+\frac{9}{x+6}}
Combine like terms in x+6-3.
\frac{\frac{x+3}{x+6}}{\frac{x\left(x+6\right)}{x+6}+\frac{9}{x+6}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x+6}{x+6}.
\frac{\frac{x+3}{x+6}}{\frac{x\left(x+6\right)+9}{x+6}}
Since \frac{x\left(x+6\right)}{x+6} and \frac{9}{x+6} have the same denominator, add them by adding their numerators.
\frac{\frac{x+3}{x+6}}{\frac{x^{2}+6x+9}{x+6}}
Do the multiplications in x\left(x+6\right)+9.
\frac{\left(x+3\right)\left(x+6\right)}{\left(x+6\right)\left(x^{2}+6x+9\right)}
Divide \frac{x+3}{x+6} by \frac{x^{2}+6x+9}{x+6} by multiplying \frac{x+3}{x+6} by the reciprocal of \frac{x^{2}+6x+9}{x+6}.
\frac{x+3}{x^{2}+6x+9}
Cancel out x+6 in both numerator and denominator.
\frac{x+3}{\left(x+3\right)^{2}}
Factor the expressions that are not already factored.
\frac{1}{x+3}
Cancel out x+3 in both numerator and denominator.
\frac{\frac{x+6}{x+6}-\frac{3}{x+6}}{x+\frac{9}{x+6}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x+6}{x+6}.
\frac{\frac{x+6-3}{x+6}}{x+\frac{9}{x+6}}
Since \frac{x+6}{x+6} and \frac{3}{x+6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x+3}{x+6}}{x+\frac{9}{x+6}}
Combine like terms in x+6-3.
\frac{\frac{x+3}{x+6}}{\frac{x\left(x+6\right)}{x+6}+\frac{9}{x+6}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{x+6}{x+6}.
\frac{\frac{x+3}{x+6}}{\frac{x\left(x+6\right)+9}{x+6}}
Since \frac{x\left(x+6\right)}{x+6} and \frac{9}{x+6} have the same denominator, add them by adding their numerators.
\frac{\frac{x+3}{x+6}}{\frac{x^{2}+6x+9}{x+6}}
Do the multiplications in x\left(x+6\right)+9.
\frac{\left(x+3\right)\left(x+6\right)}{\left(x+6\right)\left(x^{2}+6x+9\right)}
Divide \frac{x+3}{x+6} by \frac{x^{2}+6x+9}{x+6} by multiplying \frac{x+3}{x+6} by the reciprocal of \frac{x^{2}+6x+9}{x+6}.
\frac{x+3}{x^{2}+6x+9}
Cancel out x+6 in both numerator and denominator.
\frac{x+3}{\left(x+3\right)^{2}}
Factor the expressions that are not already factored.
\frac{1}{x+3}
Cancel out x+3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}