Evaluate (complex solution)
true
m\neq \frac{2}{3}
Solve for m
m\neq \frac{2}{3}
Share
Copied to clipboard
\frac{\frac{1}{2}\left(-3m+2\right)}{3m-2}<0
Factor the expressions that are not already factored in \frac{1-\frac{3}{2}m}{3m-2}.
\frac{-\frac{1}{2}\left(3m-2\right)}{3m-2}<0
Extract the negative sign in 2-3m.
-\frac{1}{2}<0
Cancel out 3m-2 in both numerator and denominator.
\text{true}
Compare -\frac{1}{2} and 0.
-\frac{3m}{2}+1>0 3m-2<0
For the quotient to be negative, -\frac{3m}{2}+1 and 3m-2 have to be of the opposite signs. Consider the case when -\frac{3m}{2}+1 is positive and 3m-2 is negative.
m<\frac{2}{3}
The solution satisfying both inequalities is m<\frac{2}{3}.
3m-2>0 -\frac{3m}{2}+1<0
Consider the case when 3m-2 is positive and -\frac{3m}{2}+1 is negative.
m>\frac{2}{3}
The solution satisfying both inequalities is m>\frac{2}{3}.
m\neq \frac{2}{3}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}