Evaluate
\frac{b-4}{b}
Expand
\frac{b-4}{b}
Quiz
Polynomial
5 problems similar to:
\frac { 1 - \frac { 16 } { b ^ { 2 } } } { 1 + \frac { 4 } { b } }
Share
Copied to clipboard
\frac{\frac{b^{2}}{b^{2}}-\frac{16}{b^{2}}}{1+\frac{4}{b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b^{2}}{b^{2}}.
\frac{\frac{b^{2}-16}{b^{2}}}{1+\frac{4}{b}}
Since \frac{b^{2}}{b^{2}} and \frac{16}{b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{b^{2}-16}{b^{2}}}{\frac{b}{b}+\frac{4}{b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b}{b}.
\frac{\frac{b^{2}-16}{b^{2}}}{\frac{b+4}{b}}
Since \frac{b}{b} and \frac{4}{b} have the same denominator, add them by adding their numerators.
\frac{\left(b^{2}-16\right)b}{b^{2}\left(b+4\right)}
Divide \frac{b^{2}-16}{b^{2}} by \frac{b+4}{b} by multiplying \frac{b^{2}-16}{b^{2}} by the reciprocal of \frac{b+4}{b}.
\frac{b^{2}-16}{b\left(b+4\right)}
Cancel out b in both numerator and denominator.
\frac{\left(b-4\right)\left(b+4\right)}{b\left(b+4\right)}
Factor the expressions that are not already factored.
\frac{b-4}{b}
Cancel out b+4 in both numerator and denominator.
\frac{\frac{b^{2}}{b^{2}}-\frac{16}{b^{2}}}{1+\frac{4}{b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b^{2}}{b^{2}}.
\frac{\frac{b^{2}-16}{b^{2}}}{1+\frac{4}{b}}
Since \frac{b^{2}}{b^{2}} and \frac{16}{b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{b^{2}-16}{b^{2}}}{\frac{b}{b}+\frac{4}{b}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b}{b}.
\frac{\frac{b^{2}-16}{b^{2}}}{\frac{b+4}{b}}
Since \frac{b}{b} and \frac{4}{b} have the same denominator, add them by adding their numerators.
\frac{\left(b^{2}-16\right)b}{b^{2}\left(b+4\right)}
Divide \frac{b^{2}-16}{b^{2}} by \frac{b+4}{b} by multiplying \frac{b^{2}-16}{b^{2}} by the reciprocal of \frac{b+4}{b}.
\frac{b^{2}-16}{b\left(b+4\right)}
Cancel out b in both numerator and denominator.
\frac{\left(b-4\right)\left(b+4\right)}{b\left(b+4\right)}
Factor the expressions that are not already factored.
\frac{b-4}{b}
Cancel out b+4 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}