Evaluate
\frac{6x-1}{3\left(4x+5\right)}
Expand
\frac{6x-1}{3\left(4x+5\right)}
Graph
Share
Copied to clipboard
\frac{\frac{6x}{6x}-\frac{1}{6x}}{2+\frac{5}{2x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{6x}{6x}.
\frac{\frac{6x-1}{6x}}{2+\frac{5}{2x}}
Since \frac{6x}{6x} and \frac{1}{6x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6x-1}{6x}}{\frac{2\times 2x}{2x}+\frac{5}{2x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2x}{2x}.
\frac{\frac{6x-1}{6x}}{\frac{2\times 2x+5}{2x}}
Since \frac{2\times 2x}{2x} and \frac{5}{2x} have the same denominator, add them by adding their numerators.
\frac{\frac{6x-1}{6x}}{\frac{4x+5}{2x}}
Do the multiplications in 2\times 2x+5.
\frac{\left(6x-1\right)\times 2x}{6x\left(4x+5\right)}
Divide \frac{6x-1}{6x} by \frac{4x+5}{2x} by multiplying \frac{6x-1}{6x} by the reciprocal of \frac{4x+5}{2x}.
\frac{6x-1}{3\left(4x+5\right)}
Cancel out 2x in both numerator and denominator.
\frac{6x-1}{12x+15}
Use the distributive property to multiply 3 by 4x+5.
\frac{\frac{6x}{6x}-\frac{1}{6x}}{2+\frac{5}{2x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{6x}{6x}.
\frac{\frac{6x-1}{6x}}{2+\frac{5}{2x}}
Since \frac{6x}{6x} and \frac{1}{6x} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{6x-1}{6x}}{\frac{2\times 2x}{2x}+\frac{5}{2x}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2x}{2x}.
\frac{\frac{6x-1}{6x}}{\frac{2\times 2x+5}{2x}}
Since \frac{2\times 2x}{2x} and \frac{5}{2x} have the same denominator, add them by adding their numerators.
\frac{\frac{6x-1}{6x}}{\frac{4x+5}{2x}}
Do the multiplications in 2\times 2x+5.
\frac{\left(6x-1\right)\times 2x}{6x\left(4x+5\right)}
Divide \frac{6x-1}{6x} by \frac{4x+5}{2x} by multiplying \frac{6x-1}{6x} by the reciprocal of \frac{4x+5}{2x}.
\frac{6x-1}{3\left(4x+5\right)}
Cancel out 2x in both numerator and denominator.
\frac{6x-1}{12x+15}
Use the distributive property to multiply 3 by 4x+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}