Evaluate
-\frac{10\sqrt{3}}{3}+6\approx 0.226497308
Factor
\frac{2 {(9 - 5 \sqrt{3})}}{3} = 0.226497308103743
Share
Copied to clipboard
\frac{\frac{3}{3}-\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
\frac{\frac{3-\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{2}}
Since \frac{3}{3} and \frac{\sqrt{3}}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3-\sqrt{3}}{3}}{\frac{2}{2}+\frac{\sqrt{3}}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{\frac{3-\sqrt{3}}{3}}{\frac{2+\sqrt{3}}{2}}
Since \frac{2}{2} and \frac{\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\frac{\left(3-\sqrt{3}\right)\times 2}{3\left(2+\sqrt{3}\right)}
Divide \frac{3-\sqrt{3}}{3} by \frac{2+\sqrt{3}}{2} by multiplying \frac{3-\sqrt{3}}{3} by the reciprocal of \frac{2+\sqrt{3}}{2}.
\frac{6-2\sqrt{3}}{3\left(2+\sqrt{3}\right)}
Use the distributive property to multiply 3-\sqrt{3} by 2.
\frac{6-2\sqrt{3}}{6+3\sqrt{3}}
Use the distributive property to multiply 3 by 2+\sqrt{3}.
\frac{\left(6-2\sqrt{3}\right)\left(6-3\sqrt{3}\right)}{\left(6+3\sqrt{3}\right)\left(6-3\sqrt{3}\right)}
Rationalize the denominator of \frac{6-2\sqrt{3}}{6+3\sqrt{3}} by multiplying numerator and denominator by 6-3\sqrt{3}.
\frac{\left(6-2\sqrt{3}\right)\left(6-3\sqrt{3}\right)}{6^{2}-\left(3\sqrt{3}\right)^{2}}
Consider \left(6+3\sqrt{3}\right)\left(6-3\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(6-2\sqrt{3}\right)\left(6-3\sqrt{3}\right)}{36-\left(3\sqrt{3}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
\frac{\left(6-2\sqrt{3}\right)\left(6-3\sqrt{3}\right)}{36-3^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
\frac{\left(6-2\sqrt{3}\right)\left(6-3\sqrt{3}\right)}{36-9\left(\sqrt{3}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(6-2\sqrt{3}\right)\left(6-3\sqrt{3}\right)}{36-9\times 3}
The square of \sqrt{3} is 3.
\frac{\left(6-2\sqrt{3}\right)\left(6-3\sqrt{3}\right)}{36-27}
Multiply 9 and 3 to get 27.
\frac{\left(6-2\sqrt{3}\right)\left(6-3\sqrt{3}\right)}{9}
Subtract 27 from 36 to get 9.
\frac{36-18\sqrt{3}-12\sqrt{3}+6\left(\sqrt{3}\right)^{2}}{9}
Apply the distributive property by multiplying each term of 6-2\sqrt{3} by each term of 6-3\sqrt{3}.
\frac{36-30\sqrt{3}+6\left(\sqrt{3}\right)^{2}}{9}
Combine -18\sqrt{3} and -12\sqrt{3} to get -30\sqrt{3}.
\frac{36-30\sqrt{3}+6\times 3}{9}
The square of \sqrt{3} is 3.
\frac{36-30\sqrt{3}+18}{9}
Multiply 6 and 3 to get 18.
\frac{54-30\sqrt{3}}{9}
Add 36 and 18 to get 54.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}