Evaluate
\frac{2}{91}\approx 0.021978022
Factor
\frac{2}{7 \cdot 13} = 0.02197802197802198
Share
Copied to clipboard
\frac{1-\frac{\frac{1}{2}+3\left(\frac{2}{6}+\frac{3}{6}\right)}{\frac{3\times 2+1}{2}}}{2+\frac{3}{\frac{2}{3}}}
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{1-\frac{\frac{1}{2}+3\times \frac{2+3}{6}}{\frac{3\times 2+1}{2}}}{2+\frac{3}{\frac{2}{3}}}
Since \frac{2}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{1-\frac{\frac{1}{2}+3\times \frac{5}{6}}{\frac{3\times 2+1}{2}}}{2+\frac{3}{\frac{2}{3}}}
Add 2 and 3 to get 5.
\frac{1-\frac{\frac{1}{2}+\frac{3\times 5}{6}}{\frac{3\times 2+1}{2}}}{2+\frac{3}{\frac{2}{3}}}
Express 3\times \frac{5}{6} as a single fraction.
\frac{1-\frac{\frac{1}{2}+\frac{15}{6}}{\frac{3\times 2+1}{2}}}{2+\frac{3}{\frac{2}{3}}}
Multiply 3 and 5 to get 15.
\frac{1-\frac{\frac{1}{2}+\frac{5}{2}}{\frac{3\times 2+1}{2}}}{2+\frac{3}{\frac{2}{3}}}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
\frac{1-\frac{\frac{1+5}{2}}{\frac{3\times 2+1}{2}}}{2+\frac{3}{\frac{2}{3}}}
Since \frac{1}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
\frac{1-\frac{\frac{6}{2}}{\frac{3\times 2+1}{2}}}{2+\frac{3}{\frac{2}{3}}}
Add 1 and 5 to get 6.
\frac{1-\frac{3}{\frac{3\times 2+1}{2}}}{2+\frac{3}{\frac{2}{3}}}
Divide 6 by 2 to get 3.
\frac{1-\frac{3}{\frac{6+1}{2}}}{2+\frac{3}{\frac{2}{3}}}
Multiply 3 and 2 to get 6.
\frac{1-\frac{3}{\frac{7}{2}}}{2+\frac{3}{\frac{2}{3}}}
Add 6 and 1 to get 7.
\frac{1-3\times \frac{2}{7}}{2+\frac{3}{\frac{2}{3}}}
Divide 3 by \frac{7}{2} by multiplying 3 by the reciprocal of \frac{7}{2}.
\frac{1-\frac{3\times 2}{7}}{2+\frac{3}{\frac{2}{3}}}
Express 3\times \frac{2}{7} as a single fraction.
\frac{1-\frac{6}{7}}{2+\frac{3}{\frac{2}{3}}}
Multiply 3 and 2 to get 6.
\frac{\frac{7}{7}-\frac{6}{7}}{2+\frac{3}{\frac{2}{3}}}
Convert 1 to fraction \frac{7}{7}.
\frac{\frac{7-6}{7}}{2+\frac{3}{\frac{2}{3}}}
Since \frac{7}{7} and \frac{6}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{7}}{2+\frac{3}{\frac{2}{3}}}
Subtract 6 from 7 to get 1.
\frac{\frac{1}{7}}{2+3\times \frac{3}{2}}
Divide 3 by \frac{2}{3} by multiplying 3 by the reciprocal of \frac{2}{3}.
\frac{\frac{1}{7}}{2+\frac{3\times 3}{2}}
Express 3\times \frac{3}{2} as a single fraction.
\frac{\frac{1}{7}}{2+\frac{9}{2}}
Multiply 3 and 3 to get 9.
\frac{\frac{1}{7}}{\frac{4}{2}+\frac{9}{2}}
Convert 2 to fraction \frac{4}{2}.
\frac{\frac{1}{7}}{\frac{4+9}{2}}
Since \frac{4}{2} and \frac{9}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{7}}{\frac{13}{2}}
Add 4 and 9 to get 13.
\frac{1}{7}\times \frac{2}{13}
Divide \frac{1}{7} by \frac{13}{2} by multiplying \frac{1}{7} by the reciprocal of \frac{13}{2}.
\frac{1\times 2}{7\times 13}
Multiply \frac{1}{7} times \frac{2}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{91}
Do the multiplications in the fraction \frac{1\times 2}{7\times 13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}