Solve for a
a=\frac{-\sqrt{15}i-3}{2}\approx -1.5-1.936491673i
a=\frac{-3+\sqrt{15}i}{2}\approx -1.5+1.936491673i
Share
Copied to clipboard
1\left(a-3\right)+\left(a+3\right)\left(-4\right)=\left(a+3\right)a+\left(a+3\right)\left(-3\right)
Variable a cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by a+3.
a-3+\left(a+3\right)\left(-4\right)=\left(a+3\right)a+\left(a+3\right)\left(-3\right)
Use the distributive property to multiply 1 by a-3.
a-3-4a-12=\left(a+3\right)a+\left(a+3\right)\left(-3\right)
Use the distributive property to multiply a+3 by -4.
-3a-3-12=\left(a+3\right)a+\left(a+3\right)\left(-3\right)
Combine a and -4a to get -3a.
-3a-15=\left(a+3\right)a+\left(a+3\right)\left(-3\right)
Subtract 12 from -3 to get -15.
-3a-15=a^{2}+3a+\left(a+3\right)\left(-3\right)
Use the distributive property to multiply a+3 by a.
-3a-15=a^{2}+3a-3a-9
Use the distributive property to multiply a+3 by -3.
-3a-15=a^{2}-9
Combine 3a and -3a to get 0.
-3a-15-a^{2}=-9
Subtract a^{2} from both sides.
-3a-15-a^{2}+9=0
Add 9 to both sides.
-3a-6-a^{2}=0
Add -15 and 9 to get -6.
-a^{2}-3a-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -3 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\left(-6\right)}}{2\left(-1\right)}
Square -3.
a=\frac{-\left(-3\right)±\sqrt{9+4\left(-6\right)}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-\left(-3\right)±\sqrt{9-24}}{2\left(-1\right)}
Multiply 4 times -6.
a=\frac{-\left(-3\right)±\sqrt{-15}}{2\left(-1\right)}
Add 9 to -24.
a=\frac{-\left(-3\right)±\sqrt{15}i}{2\left(-1\right)}
Take the square root of -15.
a=\frac{3±\sqrt{15}i}{2\left(-1\right)}
The opposite of -3 is 3.
a=\frac{3±\sqrt{15}i}{-2}
Multiply 2 times -1.
a=\frac{3+\sqrt{15}i}{-2}
Now solve the equation a=\frac{3±\sqrt{15}i}{-2} when ± is plus. Add 3 to i\sqrt{15}.
a=\frac{-\sqrt{15}i-3}{2}
Divide 3+i\sqrt{15} by -2.
a=\frac{-\sqrt{15}i+3}{-2}
Now solve the equation a=\frac{3±\sqrt{15}i}{-2} when ± is minus. Subtract i\sqrt{15} from 3.
a=\frac{-3+\sqrt{15}i}{2}
Divide 3-i\sqrt{15} by -2.
a=\frac{-\sqrt{15}i-3}{2} a=\frac{-3+\sqrt{15}i}{2}
The equation is now solved.
1\left(a-3\right)+\left(a+3\right)\left(-4\right)=\left(a+3\right)a+\left(a+3\right)\left(-3\right)
Variable a cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by a+3.
a-3+\left(a+3\right)\left(-4\right)=\left(a+3\right)a+\left(a+3\right)\left(-3\right)
Use the distributive property to multiply 1 by a-3.
a-3-4a-12=\left(a+3\right)a+\left(a+3\right)\left(-3\right)
Use the distributive property to multiply a+3 by -4.
-3a-3-12=\left(a+3\right)a+\left(a+3\right)\left(-3\right)
Combine a and -4a to get -3a.
-3a-15=\left(a+3\right)a+\left(a+3\right)\left(-3\right)
Subtract 12 from -3 to get -15.
-3a-15=a^{2}+3a+\left(a+3\right)\left(-3\right)
Use the distributive property to multiply a+3 by a.
-3a-15=a^{2}+3a-3a-9
Use the distributive property to multiply a+3 by -3.
-3a-15=a^{2}-9
Combine 3a and -3a to get 0.
-3a-15-a^{2}=-9
Subtract a^{2} from both sides.
-3a-a^{2}=-9+15
Add 15 to both sides.
-3a-a^{2}=6
Add -9 and 15 to get 6.
-a^{2}-3a=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-a^{2}-3a}{-1}=\frac{6}{-1}
Divide both sides by -1.
a^{2}+\left(-\frac{3}{-1}\right)a=\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
a^{2}+3a=\frac{6}{-1}
Divide -3 by -1.
a^{2}+3a=-6
Divide 6 by -1.
a^{2}+3a+\left(\frac{3}{2}\right)^{2}=-6+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+3a+\frac{9}{4}=-6+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}+3a+\frac{9}{4}=-\frac{15}{4}
Add -6 to \frac{9}{4}.
\left(a+\frac{3}{2}\right)^{2}=-\frac{15}{4}
Factor a^{2}+3a+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{15}{4}}
Take the square root of both sides of the equation.
a+\frac{3}{2}=\frac{\sqrt{15}i}{2} a+\frac{3}{2}=-\frac{\sqrt{15}i}{2}
Simplify.
a=\frac{-3+\sqrt{15}i}{2} a=\frac{-\sqrt{15}i-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}