\frac { 1 } { y } d y = x ( x ^ { 2 } + 1 ) ^ { - 1 } d x
Solve for d
d=0
y\neq 0
Solve for x
x\in \mathrm{R}
d=0\text{ and }y\neq 0
Share
Copied to clipboard
1dy=x\left(x^{2}+1\right)^{-1}dxy
Multiply both sides of the equation by y.
1dy=x^{2}\left(x^{2}+1\right)^{-1}dy
Multiply x and x to get x^{2}.
1dy-x^{2}\left(x^{2}+1\right)^{-1}dy=0
Subtract x^{2}\left(x^{2}+1\right)^{-1}dy from both sides.
dy-\frac{1}{x^{2}+1}dyx^{2}=0
Reorder the terms.
dy\left(x^{2}+1\right)-\frac{1}{x^{2}+1}dyx^{2}\left(x^{2}+1\right)=0
Multiply both sides of the equation by x^{2}+1.
dyx^{2}+dy-\frac{1}{x^{2}+1}dyx^{2}\left(x^{2}+1\right)=0
Use the distributive property to multiply dy by x^{2}+1.
dyx^{2}+dy-\frac{d}{x^{2}+1}yx^{2}\left(x^{2}+1\right)=0
Express \frac{1}{x^{2}+1}d as a single fraction.
dyx^{2}+dy-\frac{dy}{x^{2}+1}x^{2}\left(x^{2}+1\right)=0
Express \frac{d}{x^{2}+1}y as a single fraction.
dyx^{2}+dy-\frac{dyx^{2}}{x^{2}+1}\left(x^{2}+1\right)=0
Express \frac{dy}{x^{2}+1}x^{2} as a single fraction.
dyx^{2}+dy-\frac{dyx^{2}\left(x^{2}+1\right)}{x^{2}+1}=0
Express \frac{dyx^{2}}{x^{2}+1}\left(x^{2}+1\right) as a single fraction.
dyx^{2}+dy-dyx^{2}=0
Cancel out x^{2}+1 in both numerator and denominator.
dy=0
Combine dyx^{2} and -dyx^{2} to get 0.
yd=0
The equation is in standard form.
d=0
Divide 0 by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}