Evaluate
\frac{16}{y\left(16-y^{2}\right)}
Expand
-\frac{16}{y\left(y^{2}-16\right)}
Graph
Share
Copied to clipboard
\frac{1}{y}-\frac{y+8}{\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Factor 16-y^{2}.
\frac{\left(y-4\right)\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)}-\frac{\left(y+8\right)y}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and \left(y-4\right)\left(-y-4\right) is y\left(y-4\right)\left(-y-4\right). Multiply \frac{1}{y} times \frac{\left(y-4\right)\left(-y-4\right)}{\left(y-4\right)\left(-y-4\right)}. Multiply \frac{y+8}{\left(y-4\right)\left(-y-4\right)} times \frac{y}{y}.
\frac{\left(y-4\right)\left(-y-4\right)-\left(y+8\right)y}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Since \frac{\left(y-4\right)\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)} and \frac{\left(y+8\right)y}{y\left(y-4\right)\left(-y-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-y^{2}-4y+4y+16-y^{2}-8y}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Do the multiplications in \left(y-4\right)\left(-y-4\right)-\left(y+8\right)y.
\frac{-2y^{2}-8y+16}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Combine like terms in -y^{2}-4y+4y+16-y^{2}-8y.
\frac{-2y^{2}-8y+16}{y\left(y-4\right)\left(-y-4\right)}-\frac{2y\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y\left(y-4\right)\left(-y-4\right) and y-4 is y\left(y-4\right)\left(-y-4\right). Multiply \frac{2}{y-4} times \frac{y\left(-y-4\right)}{y\left(-y-4\right)}.
\frac{-2y^{2}-8y+16-2y\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)}
Since \frac{-2y^{2}-8y+16}{y\left(y-4\right)\left(-y-4\right)} and \frac{2y\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2y^{2}-8y+16+2y^{2}+8y}{y\left(y-4\right)\left(-y-4\right)}
Do the multiplications in -2y^{2}-8y+16-2y\left(-y-4\right).
\frac{16}{y\left(y-4\right)\left(-y-4\right)}
Combine like terms in -2y^{2}-8y+16+2y^{2}+8y.
\frac{16}{-y^{3}+16y}
Expand y\left(y-4\right)\left(-y-4\right).
\frac{1}{y}-\frac{y+8}{\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Factor 16-y^{2}.
\frac{\left(y-4\right)\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)}-\frac{\left(y+8\right)y}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and \left(y-4\right)\left(-y-4\right) is y\left(y-4\right)\left(-y-4\right). Multiply \frac{1}{y} times \frac{\left(y-4\right)\left(-y-4\right)}{\left(y-4\right)\left(-y-4\right)}. Multiply \frac{y+8}{\left(y-4\right)\left(-y-4\right)} times \frac{y}{y}.
\frac{\left(y-4\right)\left(-y-4\right)-\left(y+8\right)y}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Since \frac{\left(y-4\right)\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)} and \frac{\left(y+8\right)y}{y\left(y-4\right)\left(-y-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-y^{2}-4y+4y+16-y^{2}-8y}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Do the multiplications in \left(y-4\right)\left(-y-4\right)-\left(y+8\right)y.
\frac{-2y^{2}-8y+16}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Combine like terms in -y^{2}-4y+4y+16-y^{2}-8y.
\frac{-2y^{2}-8y+16}{y\left(y-4\right)\left(-y-4\right)}-\frac{2y\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y\left(y-4\right)\left(-y-4\right) and y-4 is y\left(y-4\right)\left(-y-4\right). Multiply \frac{2}{y-4} times \frac{y\left(-y-4\right)}{y\left(-y-4\right)}.
\frac{-2y^{2}-8y+16-2y\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)}
Since \frac{-2y^{2}-8y+16}{y\left(y-4\right)\left(-y-4\right)} and \frac{2y\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2y^{2}-8y+16+2y^{2}+8y}{y\left(y-4\right)\left(-y-4\right)}
Do the multiplications in -2y^{2}-8y+16-2y\left(-y-4\right).
\frac{16}{y\left(y-4\right)\left(-y-4\right)}
Combine like terms in -2y^{2}-8y+16+2y^{2}+8y.
\frac{16}{-y^{3}+16y}
Expand y\left(y-4\right)\left(-y-4\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}