Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{y}-\frac{y+8}{\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Factor 16-y^{2}.
\frac{\left(y-4\right)\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)}-\frac{\left(y+8\right)y}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and \left(y-4\right)\left(-y-4\right) is y\left(y-4\right)\left(-y-4\right). Multiply \frac{1}{y} times \frac{\left(y-4\right)\left(-y-4\right)}{\left(y-4\right)\left(-y-4\right)}. Multiply \frac{y+8}{\left(y-4\right)\left(-y-4\right)} times \frac{y}{y}.
\frac{\left(y-4\right)\left(-y-4\right)-\left(y+8\right)y}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Since \frac{\left(y-4\right)\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)} and \frac{\left(y+8\right)y}{y\left(y-4\right)\left(-y-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-y^{2}-4y+4y+16-y^{2}-8y}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Do the multiplications in \left(y-4\right)\left(-y-4\right)-\left(y+8\right)y.
\frac{-2y^{2}-8y+16}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Combine like terms in -y^{2}-4y+4y+16-y^{2}-8y.
\frac{-2y^{2}-8y+16}{y\left(y-4\right)\left(-y-4\right)}-\frac{2y\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y\left(y-4\right)\left(-y-4\right) and y-4 is y\left(y-4\right)\left(-y-4\right). Multiply \frac{2}{y-4} times \frac{y\left(-y-4\right)}{y\left(-y-4\right)}.
\frac{-2y^{2}-8y+16-2y\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)}
Since \frac{-2y^{2}-8y+16}{y\left(y-4\right)\left(-y-4\right)} and \frac{2y\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2y^{2}-8y+16+2y^{2}+8y}{y\left(y-4\right)\left(-y-4\right)}
Do the multiplications in -2y^{2}-8y+16-2y\left(-y-4\right).
\frac{16}{y\left(y-4\right)\left(-y-4\right)}
Combine like terms in -2y^{2}-8y+16+2y^{2}+8y.
\frac{16}{-y^{3}+16y}
Expand y\left(y-4\right)\left(-y-4\right).
\frac{1}{y}-\frac{y+8}{\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Factor 16-y^{2}.
\frac{\left(y-4\right)\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)}-\frac{\left(y+8\right)y}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and \left(y-4\right)\left(-y-4\right) is y\left(y-4\right)\left(-y-4\right). Multiply \frac{1}{y} times \frac{\left(y-4\right)\left(-y-4\right)}{\left(y-4\right)\left(-y-4\right)}. Multiply \frac{y+8}{\left(y-4\right)\left(-y-4\right)} times \frac{y}{y}.
\frac{\left(y-4\right)\left(-y-4\right)-\left(y+8\right)y}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Since \frac{\left(y-4\right)\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)} and \frac{\left(y+8\right)y}{y\left(y-4\right)\left(-y-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-y^{2}-4y+4y+16-y^{2}-8y}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Do the multiplications in \left(y-4\right)\left(-y-4\right)-\left(y+8\right)y.
\frac{-2y^{2}-8y+16}{y\left(y-4\right)\left(-y-4\right)}-\frac{2}{y-4}
Combine like terms in -y^{2}-4y+4y+16-y^{2}-8y.
\frac{-2y^{2}-8y+16}{y\left(y-4\right)\left(-y-4\right)}-\frac{2y\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y\left(y-4\right)\left(-y-4\right) and y-4 is y\left(y-4\right)\left(-y-4\right). Multiply \frac{2}{y-4} times \frac{y\left(-y-4\right)}{y\left(-y-4\right)}.
\frac{-2y^{2}-8y+16-2y\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)}
Since \frac{-2y^{2}-8y+16}{y\left(y-4\right)\left(-y-4\right)} and \frac{2y\left(-y-4\right)}{y\left(y-4\right)\left(-y-4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2y^{2}-8y+16+2y^{2}+8y}{y\left(y-4\right)\left(-y-4\right)}
Do the multiplications in -2y^{2}-8y+16-2y\left(-y-4\right).
\frac{16}{y\left(y-4\right)\left(-y-4\right)}
Combine like terms in -2y^{2}-8y+16+2y^{2}+8y.
\frac{16}{-y^{3}+16y}
Expand y\left(y-4\right)\left(-y-4\right).