Solve for y (complex solution)
y=\frac{x^{2}}{x^{4}+1}
x\neq 0\text{ and }x\neq \sqrt{2}\left(-\frac{1}{2}-\frac{1}{2}i\right)\text{ and }x\neq \sqrt{2}\left(\frac{1}{2}+\frac{1}{2}i\right)\text{ and }x\neq \sqrt{2}\left(-\frac{1}{2}+\frac{1}{2}i\right)\text{ and }x\neq \sqrt{2}\left(\frac{1}{2}-\frac{1}{2}i\right)
Solve for y
y=\frac{x^{2}}{x^{4}+1}
x\neq 0
Solve for x (complex solution)
x=\frac{y^{-\frac{1}{2}}\sqrt{2\left(\sqrt{1-4y^{2}}+1\right)}}{2}
x=-\frac{y^{-\frac{1}{2}}\sqrt{2\left(\sqrt{1-4y^{2}}+1\right)}}{2}
x=-\frac{iy^{-\frac{1}{2}}\sqrt{2\left(\sqrt{1-4y^{2}}-1\right)}}{2}
x=\frac{iy^{-\frac{1}{2}}\sqrt{2\left(\sqrt{1-4y^{2}}-1\right)}}{2}\text{, }y\neq 0
Solve for x
x=-\frac{\sqrt{\frac{2\left(\sqrt{1-4y^{2}}+1\right)}{y}}}{2}
x=\frac{\sqrt{\frac{2\left(\sqrt{1-4y^{2}}+1\right)}{y}}}{2}
x=\frac{\sqrt{\frac{2\left(-\sqrt{1-4y^{2}}+1\right)}{y}}}{2}
x=-\frac{\sqrt{\frac{2\left(-\sqrt{1-4y^{2}}+1\right)}{y}}}{2}\text{, }y>0\text{ and }y\leq \frac{1}{2}
Graph
Share
Copied to clipboard
x^{2}=yx^{2}x^{2}+y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by yx^{2}, the least common multiple of y,x^{2}.
x^{2}=yx^{4}+y
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
yx^{4}+y=x^{2}
Swap sides so that all variable terms are on the left hand side.
\left(x^{4}+1\right)y=x^{2}
Combine all terms containing y.
\frac{\left(x^{4}+1\right)y}{x^{4}+1}=\frac{x^{2}}{x^{4}+1}
Divide both sides by x^{4}+1.
y=\frac{x^{2}}{x^{4}+1}
Dividing by x^{4}+1 undoes the multiplication by x^{4}+1.
y=\frac{x^{2}}{x^{4}+1}\text{, }y\neq 0
Variable y cannot be equal to 0.
x^{2}=yx^{2}x^{2}+y
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by yx^{2}, the least common multiple of y,x^{2}.
x^{2}=yx^{4}+y
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
yx^{4}+y=x^{2}
Swap sides so that all variable terms are on the left hand side.
\left(x^{4}+1\right)y=x^{2}
Combine all terms containing y.
\frac{\left(x^{4}+1\right)y}{x^{4}+1}=\frac{x^{2}}{x^{4}+1}
Divide both sides by x^{4}+1.
y=\frac{x^{2}}{x^{4}+1}
Dividing by x^{4}+1 undoes the multiplication by x^{4}+1.
y=\frac{x^{2}}{x^{4}+1}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}