Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{y^{2}}-\frac{\left(y-1\right)y}{y^{2}}+\frac{y}{y-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y is y^{2}. Multiply \frac{y-1}{y} times \frac{y}{y}.
\frac{1-\left(y-1\right)y}{y^{2}}+\frac{y}{y-2}
Since \frac{1}{y^{2}} and \frac{\left(y-1\right)y}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{1-y^{2}+y}{y^{2}}+\frac{y}{y-2}
Do the multiplications in 1-\left(y-1\right)y.
\frac{\left(1-y^{2}+y\right)\left(y-2\right)}{\left(y-2\right)y^{2}}+\frac{yy^{2}}{\left(y-2\right)y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y-2 is \left(y-2\right)y^{2}. Multiply \frac{1-y^{2}+y}{y^{2}} times \frac{y-2}{y-2}. Multiply \frac{y}{y-2} times \frac{y^{2}}{y^{2}}.
\frac{\left(1-y^{2}+y\right)\left(y-2\right)+yy^{2}}{\left(y-2\right)y^{2}}
Since \frac{\left(1-y^{2}+y\right)\left(y-2\right)}{\left(y-2\right)y^{2}} and \frac{yy^{2}}{\left(y-2\right)y^{2}} have the same denominator, add them by adding their numerators.
\frac{y-2-y^{3}+2y^{2}+y^{2}-2y+y^{3}}{\left(y-2\right)y^{2}}
Do the multiplications in \left(1-y^{2}+y\right)\left(y-2\right)+yy^{2}.
\frac{-y-2+3y^{2}}{\left(y-2\right)y^{2}}
Combine like terms in y-2-y^{3}+2y^{2}+y^{2}-2y+y^{3}.
\frac{-y-2+3y^{2}}{y^{3}-2y^{2}}
Expand \left(y-2\right)y^{2}.
\frac{1}{y^{2}}-\frac{\left(y-1\right)y}{y^{2}}+\frac{y}{y-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y is y^{2}. Multiply \frac{y-1}{y} times \frac{y}{y}.
\frac{1-\left(y-1\right)y}{y^{2}}+\frac{y}{y-2}
Since \frac{1}{y^{2}} and \frac{\left(y-1\right)y}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{1-y^{2}+y}{y^{2}}+\frac{y}{y-2}
Do the multiplications in 1-\left(y-1\right)y.
\frac{\left(1-y^{2}+y\right)\left(y-2\right)}{\left(y-2\right)y^{2}}+\frac{yy^{2}}{\left(y-2\right)y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y-2 is \left(y-2\right)y^{2}. Multiply \frac{1-y^{2}+y}{y^{2}} times \frac{y-2}{y-2}. Multiply \frac{y}{y-2} times \frac{y^{2}}{y^{2}}.
\frac{\left(1-y^{2}+y\right)\left(y-2\right)+yy^{2}}{\left(y-2\right)y^{2}}
Since \frac{\left(1-y^{2}+y\right)\left(y-2\right)}{\left(y-2\right)y^{2}} and \frac{yy^{2}}{\left(y-2\right)y^{2}} have the same denominator, add them by adding their numerators.
\frac{y-2-y^{3}+2y^{2}+y^{2}-2y+y^{3}}{\left(y-2\right)y^{2}}
Do the multiplications in \left(1-y^{2}+y\right)\left(y-2\right)+yy^{2}.
\frac{-y-2+3y^{2}}{\left(y-2\right)y^{2}}
Combine like terms in y-2-y^{3}+2y^{2}+y^{2}-2y+y^{3}.
\frac{-y-2+3y^{2}}{y^{3}-2y^{2}}
Expand \left(y-2\right)y^{2}.