Evaluate
\frac{\left(y-1\right)\left(3y+2\right)}{\left(y-2\right)y^{2}}
Expand
\frac{3y^{2}-y-2}{\left(y-2\right)y^{2}}
Graph
Share
Copied to clipboard
\frac{1}{y^{2}}-\frac{\left(y-1\right)y}{y^{2}}+\frac{y}{y-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y is y^{2}. Multiply \frac{y-1}{y} times \frac{y}{y}.
\frac{1-\left(y-1\right)y}{y^{2}}+\frac{y}{y-2}
Since \frac{1}{y^{2}} and \frac{\left(y-1\right)y}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{1-y^{2}+y}{y^{2}}+\frac{y}{y-2}
Do the multiplications in 1-\left(y-1\right)y.
\frac{\left(1-y^{2}+y\right)\left(y-2\right)}{\left(y-2\right)y^{2}}+\frac{yy^{2}}{\left(y-2\right)y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y-2 is \left(y-2\right)y^{2}. Multiply \frac{1-y^{2}+y}{y^{2}} times \frac{y-2}{y-2}. Multiply \frac{y}{y-2} times \frac{y^{2}}{y^{2}}.
\frac{\left(1-y^{2}+y\right)\left(y-2\right)+yy^{2}}{\left(y-2\right)y^{2}}
Since \frac{\left(1-y^{2}+y\right)\left(y-2\right)}{\left(y-2\right)y^{2}} and \frac{yy^{2}}{\left(y-2\right)y^{2}} have the same denominator, add them by adding their numerators.
\frac{y-2-y^{3}+2y^{2}+y^{2}-2y+y^{3}}{\left(y-2\right)y^{2}}
Do the multiplications in \left(1-y^{2}+y\right)\left(y-2\right)+yy^{2}.
\frac{-y-2+3y^{2}}{\left(y-2\right)y^{2}}
Combine like terms in y-2-y^{3}+2y^{2}+y^{2}-2y+y^{3}.
\frac{-y-2+3y^{2}}{y^{3}-2y^{2}}
Expand \left(y-2\right)y^{2}.
\frac{1}{y^{2}}-\frac{\left(y-1\right)y}{y^{2}}+\frac{y}{y-2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y is y^{2}. Multiply \frac{y-1}{y} times \frac{y}{y}.
\frac{1-\left(y-1\right)y}{y^{2}}+\frac{y}{y-2}
Since \frac{1}{y^{2}} and \frac{\left(y-1\right)y}{y^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{1-y^{2}+y}{y^{2}}+\frac{y}{y-2}
Do the multiplications in 1-\left(y-1\right)y.
\frac{\left(1-y^{2}+y\right)\left(y-2\right)}{\left(y-2\right)y^{2}}+\frac{yy^{2}}{\left(y-2\right)y^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y^{2} and y-2 is \left(y-2\right)y^{2}. Multiply \frac{1-y^{2}+y}{y^{2}} times \frac{y-2}{y-2}. Multiply \frac{y}{y-2} times \frac{y^{2}}{y^{2}}.
\frac{\left(1-y^{2}+y\right)\left(y-2\right)+yy^{2}}{\left(y-2\right)y^{2}}
Since \frac{\left(1-y^{2}+y\right)\left(y-2\right)}{\left(y-2\right)y^{2}} and \frac{yy^{2}}{\left(y-2\right)y^{2}} have the same denominator, add them by adding their numerators.
\frac{y-2-y^{3}+2y^{2}+y^{2}-2y+y^{3}}{\left(y-2\right)y^{2}}
Do the multiplications in \left(1-y^{2}+y\right)\left(y-2\right)+yy^{2}.
\frac{-y-2+3y^{2}}{\left(y-2\right)y^{2}}
Combine like terms in y-2-y^{3}+2y^{2}+y^{2}-2y+y^{3}.
\frac{-y-2+3y^{2}}{y^{3}-2y^{2}}
Expand \left(y-2\right)y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}