Solve for y
y = -\frac{35}{4} = -8\frac{3}{4} = -8.75
Graph
Share
Copied to clipboard
2+2\left(y+9\right)\left(-2\right)=1
Variable y cannot be equal to -9 since division by zero is not defined. Multiply both sides of the equation by 2\left(y+9\right), the least common multiple of y+9,2\left(y+9\right).
2-4\left(y+9\right)=1
Multiply 2 and -2 to get -4.
2-4y-36=1
Use the distributive property to multiply -4 by y+9.
-34-4y=1
Subtract 36 from 2 to get -34.
-4y=1+34
Add 34 to both sides.
-4y=35
Add 1 and 34 to get 35.
y=\frac{35}{-4}
Divide both sides by -4.
y=-\frac{35}{4}
Fraction \frac{35}{-4} can be rewritten as -\frac{35}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}