Solve for x
x = \frac{19}{3} = 6\frac{1}{3} \approx 6.333333333
Graph
Share
Copied to clipboard
x+1-\left(x-5\right)\times 4=2
Variable x cannot be equal to any of the values -1,5 since division by zero is not defined. Multiply both sides of the equation by \left(x-5\right)\left(x+1\right), the least common multiple of x-5,x+1,x^{2}-4x-5.
x+1-\left(4x-20\right)=2
Use the distributive property to multiply x-5 by 4.
x+1-4x+20=2
To find the opposite of 4x-20, find the opposite of each term.
-3x+1+20=2
Combine x and -4x to get -3x.
-3x+21=2
Add 1 and 20 to get 21.
-3x=2-21
Subtract 21 from both sides.
-3x=-19
Subtract 21 from 2 to get -19.
x=\frac{-19}{-3}
Divide both sides by -3.
x=\frac{19}{3}
Fraction \frac{-19}{-3} can be simplified to \frac{19}{3} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}