Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-3}{\left(x-4\right)\left(x-3\right)}-\frac{x-4}{\left(x-4\right)\left(x-3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x-3 is \left(x-4\right)\left(x-3\right). Multiply \frac{1}{x-4} times \frac{x-3}{x-3}. Multiply \frac{1}{x-3} times \frac{x-4}{x-4}.
\frac{x-3-\left(x-4\right)}{\left(x-4\right)\left(x-3\right)}
Since \frac{x-3}{\left(x-4\right)\left(x-3\right)} and \frac{x-4}{\left(x-4\right)\left(x-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-3-x+4}{\left(x-4\right)\left(x-3\right)}
Do the multiplications in x-3-\left(x-4\right).
\frac{1}{\left(x-4\right)\left(x-3\right)}
Combine like terms in x-3-x+4.
\frac{1}{x^{2}-7x+12}
Expand \left(x-4\right)\left(x-3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-3}{\left(x-4\right)\left(x-3\right)}-\frac{x-4}{\left(x-4\right)\left(x-3\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-4 and x-3 is \left(x-4\right)\left(x-3\right). Multiply \frac{1}{x-4} times \frac{x-3}{x-3}. Multiply \frac{1}{x-3} times \frac{x-4}{x-4}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-3-\left(x-4\right)}{\left(x-4\right)\left(x-3\right)})
Since \frac{x-3}{\left(x-4\right)\left(x-3\right)} and \frac{x-4}{\left(x-4\right)\left(x-3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-3-x+4}{\left(x-4\right)\left(x-3\right)})
Do the multiplications in x-3-\left(x-4\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(x-4\right)\left(x-3\right)})
Combine like terms in x-3-x+4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{2}-3x-4x+12})
Apply the distributive property by multiplying each term of x-4 by each term of x-3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{2}-7x+12})
Combine -3x and -4x to get -7x.
-\left(x^{2}-7x^{1}+12\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-7x^{1}+12)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{2}-7x^{1}+12\right)^{-2}\left(2x^{2-1}-7x^{1-1}\right)
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(x^{2}-7x^{1}+12\right)^{-2}\left(-2x^{1}+7x^{0}\right)
Simplify.
\left(x^{2}-7x+12\right)^{-2}\left(-2x+7x^{0}\right)
For any term t, t^{1}=t.
\left(x^{2}-7x+12\right)^{-2}\left(-2x+7\times 1\right)
For any term t except 0, t^{0}=1.
\left(x^{2}-7x+12\right)^{-2}\left(-2x+7\right)
For any term t, t\times 1=t and 1t=t.