Evaluate
\frac{2}{x}
Differentiate w.r.t. x
-\frac{2}{x^{2}}
Graph
Share
Copied to clipboard
\frac{x+2a}{\left(x-2a\right)\left(x+2a\right)}+\frac{x-2a}{\left(x-2a\right)\left(x+2a\right)}+\frac{8a^{2}}{4a^{2}x-x^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2a and x+2a is \left(x-2a\right)\left(x+2a\right). Multiply \frac{1}{x-2a} times \frac{x+2a}{x+2a}. Multiply \frac{1}{x+2a} times \frac{x-2a}{x-2a}.
\frac{x+2a+x-2a}{\left(x-2a\right)\left(x+2a\right)}+\frac{8a^{2}}{4a^{2}x-x^{3}}
Since \frac{x+2a}{\left(x-2a\right)\left(x+2a\right)} and \frac{x-2a}{\left(x-2a\right)\left(x+2a\right)} have the same denominator, add them by adding their numerators.
\frac{2x}{\left(x-2a\right)\left(x+2a\right)}+\frac{8a^{2}}{4a^{2}x-x^{3}}
Combine like terms in x+2a+x-2a.
\frac{2x}{\left(x-2a\right)\left(x+2a\right)}+\frac{8a^{2}}{x\left(x+2a\right)\left(-x+2a\right)}
Factor 4a^{2}x-x^{3}.
\frac{2x\left(-1\right)x}{x\left(x+2a\right)\left(-x+2a\right)}+\frac{8a^{2}}{x\left(x+2a\right)\left(-x+2a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2a\right)\left(x+2a\right) and x\left(x+2a\right)\left(-x+2a\right) is x\left(x+2a\right)\left(-x+2a\right). Multiply \frac{2x}{\left(x-2a\right)\left(x+2a\right)} times \frac{-x}{-x}.
\frac{2x\left(-1\right)x+8a^{2}}{x\left(x+2a\right)\left(-x+2a\right)}
Since \frac{2x\left(-1\right)x}{x\left(x+2a\right)\left(-x+2a\right)} and \frac{8a^{2}}{x\left(x+2a\right)\left(-x+2a\right)} have the same denominator, add them by adding their numerators.
\frac{-2x^{2}+8a^{2}}{x\left(x+2a\right)\left(-x+2a\right)}
Do the multiplications in 2x\left(-1\right)x+8a^{2}.
\frac{2\left(x-2a\right)\left(-x-2a\right)}{x\left(x+2a\right)\left(-x+2a\right)}
Factor the expressions that are not already factored in \frac{-2x^{2}+8a^{2}}{x\left(x+2a\right)\left(-x+2a\right)}.
\frac{-\left(-1\right)\times 2\left(x+2a\right)\left(-x+2a\right)}{x\left(x+2a\right)\left(-x+2a\right)}
Extract the negative sign in -x-2a. Extract the negative sign in x-2a.
\frac{-\left(-1\right)\times 2}{x}
Cancel out \left(x+2a\right)\left(-x+2a\right) in both numerator and denominator.
\frac{2}{x}
Multiply -1 and -1 to get 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+2a}{\left(x-2a\right)\left(x+2a\right)}+\frac{x-2a}{\left(x-2a\right)\left(x+2a\right)}+\frac{8a^{2}}{4a^{2}x-x^{3}})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2a and x+2a is \left(x-2a\right)\left(x+2a\right). Multiply \frac{1}{x-2a} times \frac{x+2a}{x+2a}. Multiply \frac{1}{x+2a} times \frac{x-2a}{x-2a}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+2a+x-2a}{\left(x-2a\right)\left(x+2a\right)}+\frac{8a^{2}}{4a^{2}x-x^{3}})
Since \frac{x+2a}{\left(x-2a\right)\left(x+2a\right)} and \frac{x-2a}{\left(x-2a\right)\left(x+2a\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{\left(x-2a\right)\left(x+2a\right)}+\frac{8a^{2}}{4a^{2}x-x^{3}})
Combine like terms in x+2a+x-2a.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{\left(x-2a\right)\left(x+2a\right)}+\frac{8a^{2}}{x\left(x+2a\right)\left(-x+2a\right)})
Factor 4a^{2}x-x^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(-1\right)x}{x\left(x+2a\right)\left(-x+2a\right)}+\frac{8a^{2}}{x\left(x+2a\right)\left(-x+2a\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2a\right)\left(x+2a\right) and x\left(x+2a\right)\left(-x+2a\right) is x\left(x+2a\right)\left(-x+2a\right). Multiply \frac{2x}{\left(x-2a\right)\left(x+2a\right)} times \frac{-x}{-x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(-1\right)x+8a^{2}}{x\left(x+2a\right)\left(-x+2a\right)})
Since \frac{2x\left(-1\right)x}{x\left(x+2a\right)\left(-x+2a\right)} and \frac{8a^{2}}{x\left(x+2a\right)\left(-x+2a\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x^{2}+8a^{2}}{x\left(x+2a\right)\left(-x+2a\right)})
Do the multiplications in 2x\left(-1\right)x+8a^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-2a\right)\left(-x-2a\right)}{x\left(x+2a\right)\left(-x+2a\right)})
Factor the expressions that are not already factored in \frac{-2x^{2}+8a^{2}}{x\left(x+2a\right)\left(-x+2a\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\left(-1\right)\times 2\left(x+2a\right)\left(-x+2a\right)}{x\left(x+2a\right)\left(-x+2a\right)})
Extract the negative sign in -x-2a. Extract the negative sign in x-2a.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-\left(-1\right)\times 2}{x})
Cancel out \left(x+2a\right)\left(-x+2a\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{x})
Multiply -1 and -1 to get 1.
-2x^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-2x^{-2}
Subtract 1 from -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}