Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{x-2}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right). Multiply \frac{1}{x-2} times \frac{x+2}{x+2}.
\frac{x+2-\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{x+2}{\left(x-2\right)\left(x+2\right)} and \frac{x+1}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+2-x-1}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in x+2-\left(x+1\right).
\frac{1}{\left(x-2\right)\left(x+2\right)}
Combine like terms in x+2-x-1.
\frac{1}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).
\frac{1}{x-2}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}
Factor x^{2}-4.
\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x+1}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-2 and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right). Multiply \frac{1}{x-2} times \frac{x+2}{x+2}.
\frac{x+2-\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}
Since \frac{x+2}{\left(x-2\right)\left(x+2\right)} and \frac{x+1}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+2-x-1}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in x+2-\left(x+1\right).
\frac{1}{\left(x-2\right)\left(x+2\right)}
Combine like terms in x+2-x-1.
\frac{1}{x^{2}-4}
Expand \left(x-2\right)\left(x+2\right).