Solve for x
x=\frac{\sqrt{3}}{3}+3\approx 3.577350269
x=-\frac{\sqrt{3}}{3}+3\approx 2.422649731
Graph
Share
Copied to clipboard
\left(x-4\right)\left(x-3\right)+\left(x-4\right)\left(x-2\right)=-\left(x-3\right)\left(x-2\right)
Variable x cannot be equal to any of the values 2,3,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-3\right)\left(x-2\right), the least common multiple of x-2,x-3,x-4.
x^{2}-7x+12+\left(x-4\right)\left(x-2\right)=-\left(x-3\right)\left(x-2\right)
Use the distributive property to multiply x-4 by x-3 and combine like terms.
x^{2}-7x+12+x^{2}-6x+8=-\left(x-3\right)\left(x-2\right)
Use the distributive property to multiply x-4 by x-2 and combine like terms.
2x^{2}-7x+12-6x+8=-\left(x-3\right)\left(x-2\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-13x+12+8=-\left(x-3\right)\left(x-2\right)
Combine -7x and -6x to get -13x.
2x^{2}-13x+20=-\left(x-3\right)\left(x-2\right)
Add 12 and 8 to get 20.
2x^{2}-13x+20=-\left(x^{2}-5x+6\right)
Use the distributive property to multiply x-3 by x-2 and combine like terms.
2x^{2}-13x+20=-x^{2}+5x-6
To find the opposite of x^{2}-5x+6, find the opposite of each term.
2x^{2}-13x+20+x^{2}=5x-6
Add x^{2} to both sides.
3x^{2}-13x+20=5x-6
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-13x+20-5x=-6
Subtract 5x from both sides.
3x^{2}-18x+20=-6
Combine -13x and -5x to get -18x.
3x^{2}-18x+20+6=0
Add 6 to both sides.
3x^{2}-18x+26=0
Add 20 and 6 to get 26.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 3\times 26}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -18 for b, and 26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 3\times 26}}{2\times 3}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-12\times 26}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-18\right)±\sqrt{324-312}}{2\times 3}
Multiply -12 times 26.
x=\frac{-\left(-18\right)±\sqrt{12}}{2\times 3}
Add 324 to -312.
x=\frac{-\left(-18\right)±2\sqrt{3}}{2\times 3}
Take the square root of 12.
x=\frac{18±2\sqrt{3}}{2\times 3}
The opposite of -18 is 18.
x=\frac{18±2\sqrt{3}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{3}+18}{6}
Now solve the equation x=\frac{18±2\sqrt{3}}{6} when ± is plus. Add 18 to 2\sqrt{3}.
x=\frac{\sqrt{3}}{3}+3
Divide 18+2\sqrt{3} by 6.
x=\frac{18-2\sqrt{3}}{6}
Now solve the equation x=\frac{18±2\sqrt{3}}{6} when ± is minus. Subtract 2\sqrt{3} from 18.
x=-\frac{\sqrt{3}}{3}+3
Divide 18-2\sqrt{3} by 6.
x=\frac{\sqrt{3}}{3}+3 x=-\frac{\sqrt{3}}{3}+3
The equation is now solved.
\left(x-4\right)\left(x-3\right)+\left(x-4\right)\left(x-2\right)=-\left(x-3\right)\left(x-2\right)
Variable x cannot be equal to any of the values 2,3,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-3\right)\left(x-2\right), the least common multiple of x-2,x-3,x-4.
x^{2}-7x+12+\left(x-4\right)\left(x-2\right)=-\left(x-3\right)\left(x-2\right)
Use the distributive property to multiply x-4 by x-3 and combine like terms.
x^{2}-7x+12+x^{2}-6x+8=-\left(x-3\right)\left(x-2\right)
Use the distributive property to multiply x-4 by x-2 and combine like terms.
2x^{2}-7x+12-6x+8=-\left(x-3\right)\left(x-2\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-13x+12+8=-\left(x-3\right)\left(x-2\right)
Combine -7x and -6x to get -13x.
2x^{2}-13x+20=-\left(x-3\right)\left(x-2\right)
Add 12 and 8 to get 20.
2x^{2}-13x+20=-\left(x^{2}-5x+6\right)
Use the distributive property to multiply x-3 by x-2 and combine like terms.
2x^{2}-13x+20=-x^{2}+5x-6
To find the opposite of x^{2}-5x+6, find the opposite of each term.
2x^{2}-13x+20+x^{2}=5x-6
Add x^{2} to both sides.
3x^{2}-13x+20=5x-6
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}-13x+20-5x=-6
Subtract 5x from both sides.
3x^{2}-18x+20=-6
Combine -13x and -5x to get -18x.
3x^{2}-18x=-6-20
Subtract 20 from both sides.
3x^{2}-18x=-26
Subtract 20 from -6 to get -26.
\frac{3x^{2}-18x}{3}=-\frac{26}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{18}{3}\right)x=-\frac{26}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-6x=-\frac{26}{3}
Divide -18 by 3.
x^{2}-6x+\left(-3\right)^{2}=-\frac{26}{3}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-\frac{26}{3}+9
Square -3.
x^{2}-6x+9=\frac{1}{3}
Add -\frac{26}{3} to 9.
\left(x-3\right)^{2}=\frac{1}{3}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{\frac{1}{3}}
Take the square root of both sides of the equation.
x-3=\frac{\sqrt{3}}{3} x-3=-\frac{\sqrt{3}}{3}
Simplify.
x=\frac{\sqrt{3}}{3}+3 x=-\frac{\sqrt{3}}{3}+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}