Solve for x
x=\frac{5\sqrt{19}}{2}+5\approx 15.897247359
x=-\frac{5\sqrt{19}}{2}+5\approx -5.897247359
Graph
Share
Copied to clipboard
75x-\left(75x-750\right)=8x\left(x-10\right)
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by 75x\left(x-10\right), the least common multiple of x-10,x,75.
75x-75x+750=8x\left(x-10\right)
To find the opposite of 75x-750, find the opposite of each term.
750=8x\left(x-10\right)
Combine 75x and -75x to get 0.
750=8x^{2}-80x
Use the distributive property to multiply 8x by x-10.
8x^{2}-80x=750
Swap sides so that all variable terms are on the left hand side.
8x^{2}-80x-750=0
Subtract 750 from both sides.
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 8\left(-750\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -80 for b, and -750 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 8\left(-750\right)}}{2\times 8}
Square -80.
x=\frac{-\left(-80\right)±\sqrt{6400-32\left(-750\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-80\right)±\sqrt{6400+24000}}{2\times 8}
Multiply -32 times -750.
x=\frac{-\left(-80\right)±\sqrt{30400}}{2\times 8}
Add 6400 to 24000.
x=\frac{-\left(-80\right)±40\sqrt{19}}{2\times 8}
Take the square root of 30400.
x=\frac{80±40\sqrt{19}}{2\times 8}
The opposite of -80 is 80.
x=\frac{80±40\sqrt{19}}{16}
Multiply 2 times 8.
x=\frac{40\sqrt{19}+80}{16}
Now solve the equation x=\frac{80±40\sqrt{19}}{16} when ± is plus. Add 80 to 40\sqrt{19}.
x=\frac{5\sqrt{19}}{2}+5
Divide 80+40\sqrt{19} by 16.
x=\frac{80-40\sqrt{19}}{16}
Now solve the equation x=\frac{80±40\sqrt{19}}{16} when ± is minus. Subtract 40\sqrt{19} from 80.
x=-\frac{5\sqrt{19}}{2}+5
Divide 80-40\sqrt{19} by 16.
x=\frac{5\sqrt{19}}{2}+5 x=-\frac{5\sqrt{19}}{2}+5
The equation is now solved.
75x-\left(75x-750\right)=8x\left(x-10\right)
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by 75x\left(x-10\right), the least common multiple of x-10,x,75.
75x-75x+750=8x\left(x-10\right)
To find the opposite of 75x-750, find the opposite of each term.
750=8x\left(x-10\right)
Combine 75x and -75x to get 0.
750=8x^{2}-80x
Use the distributive property to multiply 8x by x-10.
8x^{2}-80x=750
Swap sides so that all variable terms are on the left hand side.
\frac{8x^{2}-80x}{8}=\frac{750}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{80}{8}\right)x=\frac{750}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-10x=\frac{750}{8}
Divide -80 by 8.
x^{2}-10x=\frac{375}{4}
Reduce the fraction \frac{750}{8} to lowest terms by extracting and canceling out 2.
x^{2}-10x+\left(-5\right)^{2}=\frac{375}{4}+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=\frac{375}{4}+25
Square -5.
x^{2}-10x+25=\frac{475}{4}
Add \frac{375}{4} to 25.
\left(x-5\right)^{2}=\frac{475}{4}
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{\frac{475}{4}}
Take the square root of both sides of the equation.
x-5=\frac{5\sqrt{19}}{2} x-5=-\frac{5\sqrt{19}}{2}
Simplify.
x=\frac{5\sqrt{19}}{2}+5 x=-\frac{5\sqrt{19}}{2}+5
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}