Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+1-\left(x-1\right)x+\left(x-1\right)\left(x+1\right)\left(-2\right)=0
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x+1.
x+1-\left(x^{2}-x\right)+\left(x-1\right)\left(x+1\right)\left(-2\right)=0
Use the distributive property to multiply x-1 by x.
x+1-x^{2}+x+\left(x-1\right)\left(x+1\right)\left(-2\right)=0
To find the opposite of x^{2}-x, find the opposite of each term.
2x+1-x^{2}+\left(x-1\right)\left(x+1\right)\left(-2\right)=0
Combine x and x to get 2x.
2x+1-x^{2}+\left(x^{2}-1\right)\left(-2\right)=0
Use the distributive property to multiply x-1 by x+1 and combine like terms.
2x+1-x^{2}-2x^{2}+2=0
Use the distributive property to multiply x^{2}-1 by -2.
2x+1-3x^{2}+2=0
Combine -x^{2} and -2x^{2} to get -3x^{2}.
2x+3-3x^{2}=0
Add 1 and 2 to get 3.
-3x^{2}+2x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)\times 3}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)\times 3}}{2\left(-3\right)}
Square 2.
x=\frac{-2±\sqrt{4+12\times 3}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-2±\sqrt{4+36}}{2\left(-3\right)}
Multiply 12 times 3.
x=\frac{-2±\sqrt{40}}{2\left(-3\right)}
Add 4 to 36.
x=\frac{-2±2\sqrt{10}}{2\left(-3\right)}
Take the square root of 40.
x=\frac{-2±2\sqrt{10}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{10}-2}{-6}
Now solve the equation x=\frac{-2±2\sqrt{10}}{-6} when ± is plus. Add -2 to 2\sqrt{10}.
x=\frac{1-\sqrt{10}}{3}
Divide -2+2\sqrt{10} by -6.
x=\frac{-2\sqrt{10}-2}{-6}
Now solve the equation x=\frac{-2±2\sqrt{10}}{-6} when ± is minus. Subtract 2\sqrt{10} from -2.
x=\frac{\sqrt{10}+1}{3}
Divide -2-2\sqrt{10} by -6.
x=\frac{1-\sqrt{10}}{3} x=\frac{\sqrt{10}+1}{3}
The equation is now solved.
x+1-\left(x-1\right)x+\left(x-1\right)\left(x+1\right)\left(-2\right)=0
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right), the least common multiple of x-1,x+1.
x+1-\left(x^{2}-x\right)+\left(x-1\right)\left(x+1\right)\left(-2\right)=0
Use the distributive property to multiply x-1 by x.
x+1-x^{2}+x+\left(x-1\right)\left(x+1\right)\left(-2\right)=0
To find the opposite of x^{2}-x, find the opposite of each term.
2x+1-x^{2}+\left(x-1\right)\left(x+1\right)\left(-2\right)=0
Combine x and x to get 2x.
2x+1-x^{2}+\left(x^{2}-1\right)\left(-2\right)=0
Use the distributive property to multiply x-1 by x+1 and combine like terms.
2x+1-x^{2}-2x^{2}+2=0
Use the distributive property to multiply x^{2}-1 by -2.
2x+1-3x^{2}+2=0
Combine -x^{2} and -2x^{2} to get -3x^{2}.
2x+3-3x^{2}=0
Add 1 and 2 to get 3.
2x-3x^{2}=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
-3x^{2}+2x=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+2x}{-3}=-\frac{3}{-3}
Divide both sides by -3.
x^{2}+\frac{2}{-3}x=-\frac{3}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{2}{3}x=-\frac{3}{-3}
Divide 2 by -3.
x^{2}-\frac{2}{3}x=1
Divide -3 by -3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=1+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=1+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{10}{9}
Add 1 to \frac{1}{9}.
\left(x-\frac{1}{3}\right)^{2}=\frac{10}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{\sqrt{10}}{3} x-\frac{1}{3}=-\frac{\sqrt{10}}{3}
Simplify.
x=\frac{\sqrt{10}+1}{3} x=\frac{1-\sqrt{10}}{3}
Add \frac{1}{3} to both sides of the equation.