Solve for x
x = \frac{30}{23} = 1\frac{7}{23} \approx 1.304347826
Graph
Share
Copied to clipboard
7+7\left(x-1\right)\left(-\frac{2}{7}\right)=21\left(x-1\right)
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by 7\left(x-1\right), the least common multiple of x-1,7.
7-2\left(x-1\right)=21\left(x-1\right)
Multiply 7 and -\frac{2}{7} to get -2.
7-2x+2=21\left(x-1\right)
Use the distributive property to multiply -2 by x-1.
9-2x=21\left(x-1\right)
Add 7 and 2 to get 9.
9-2x=21x-21
Use the distributive property to multiply 21 by x-1.
9-2x-21x=-21
Subtract 21x from both sides.
9-23x=-21
Combine -2x and -21x to get -23x.
-23x=-21-9
Subtract 9 from both sides.
-23x=-30
Subtract 9 from -21 to get -30.
x=\frac{-30}{-23}
Divide both sides by -23.
x=\frac{30}{23}
Fraction \frac{-30}{-23} can be simplified to \frac{30}{23} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}