Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-4\right)\left(x-3\right)\left(x-2\right)-\left(x-4\right)\left(x-3\right)\left(x-1\right)=\left(x-4\right)\left(x-2\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)\left(x-1\right)
Variable x cannot be equal to any of the values 1,2,3,4 since division by zero is not defined. Multiply both sides of the equation by \left(x-4\right)\left(x-3\right)\left(x-2\right)\left(x-1\right), the least common multiple of x-1,x-2,x-3,x-4.
\left(x^{2}-7x+12\right)\left(x-2\right)-\left(x-4\right)\left(x-3\right)\left(x-1\right)=\left(x-4\right)\left(x-2\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)\left(x-1\right)
Use the distributive property to multiply x-4 by x-3 and combine like terms.
x^{3}-9x^{2}+26x-24-\left(x-4\right)\left(x-3\right)\left(x-1\right)=\left(x-4\right)\left(x-2\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)\left(x-1\right)
Use the distributive property to multiply x^{2}-7x+12 by x-2 and combine like terms.
x^{3}-9x^{2}+26x-24-\left(x^{2}-7x+12\right)\left(x-1\right)=\left(x-4\right)\left(x-2\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)\left(x-1\right)
Use the distributive property to multiply x-4 by x-3 and combine like terms.
x^{3}-9x^{2}+26x-24-\left(x^{3}-8x^{2}+19x-12\right)=\left(x-4\right)\left(x-2\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)\left(x-1\right)
Use the distributive property to multiply x^{2}-7x+12 by x-1 and combine like terms.
x^{3}-9x^{2}+26x-24-x^{3}+8x^{2}-19x+12=\left(x-4\right)\left(x-2\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)\left(x-1\right)
To find the opposite of x^{3}-8x^{2}+19x-12, find the opposite of each term.
-9x^{2}+26x-24+8x^{2}-19x+12=\left(x-4\right)\left(x-2\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)\left(x-1\right)
Combine x^{3} and -x^{3} to get 0.
-x^{2}+26x-24-19x+12=\left(x-4\right)\left(x-2\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)\left(x-1\right)
Combine -9x^{2} and 8x^{2} to get -x^{2}.
-x^{2}+7x-24+12=\left(x-4\right)\left(x-2\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)\left(x-1\right)
Combine 26x and -19x to get 7x.
-x^{2}+7x-12=\left(x-4\right)\left(x-2\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)\left(x-1\right)
Add -24 and 12 to get -12.
-x^{2}+7x-12=\left(x^{2}-6x+8\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)\left(x-1\right)
Use the distributive property to multiply x-4 by x-2 and combine like terms.
-x^{2}+7x-12=x^{3}-7x^{2}+14x-8-\left(x-3\right)\left(x-2\right)\left(x-1\right)
Use the distributive property to multiply x^{2}-6x+8 by x-1 and combine like terms.
-x^{2}+7x-12=x^{3}-7x^{2}+14x-8-\left(x^{2}-5x+6\right)\left(x-1\right)
Use the distributive property to multiply x-3 by x-2 and combine like terms.
-x^{2}+7x-12=x^{3}-7x^{2}+14x-8-\left(x^{3}-6x^{2}+11x-6\right)
Use the distributive property to multiply x^{2}-5x+6 by x-1 and combine like terms.
-x^{2}+7x-12=x^{3}-7x^{2}+14x-8-x^{3}+6x^{2}-11x+6
To find the opposite of x^{3}-6x^{2}+11x-6, find the opposite of each term.
-x^{2}+7x-12=-7x^{2}+14x-8+6x^{2}-11x+6
Combine x^{3} and -x^{3} to get 0.
-x^{2}+7x-12=-x^{2}+14x-8-11x+6
Combine -7x^{2} and 6x^{2} to get -x^{2}.
-x^{2}+7x-12=-x^{2}+3x-8+6
Combine 14x and -11x to get 3x.
-x^{2}+7x-12=-x^{2}+3x-2
Add -8 and 6 to get -2.
-x^{2}+7x-12+x^{2}=3x-2
Add x^{2} to both sides.
7x-12=3x-2
Combine -x^{2} and x^{2} to get 0.
7x-12-3x=-2
Subtract 3x from both sides.
4x-12=-2
Combine 7x and -3x to get 4x.
4x=-2+12
Add 12 to both sides.
4x=10
Add -2 and 12 to get 10.
x=\frac{10}{4}
Divide both sides by 4.
x=\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.