Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{x-1}+\frac{2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+5x-1}{1-x^{3}}
Factor x^{2}-1.
\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+5x-1}{1-x^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and \left(x-1\right)\left(x+1\right) is \left(x-1\right)\left(x+1\right). Multiply \frac{1}{x-1} times \frac{x+1}{x+1}.
\frac{x+1+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+5x-1}{1-x^{3}}
Since \frac{x+1}{\left(x-1\right)\left(x+1\right)} and \frac{2x+1}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{3x+2}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+5x-1}{1-x^{3}}
Combine like terms in x+1+2x+1.
\frac{3x+2}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+5x-1}{\left(x-1\right)\left(-x^{2}-x-1\right)}
Factor 1-x^{3}.
\frac{\left(3x+2\right)\left(-x^{2}-x-1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)}-\frac{\left(3x^{2}+5x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and \left(x-1\right)\left(-x^{2}-x-1\right) is \left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right). Multiply \frac{3x+2}{\left(x-1\right)\left(x+1\right)} times \frac{-x^{2}-x-1}{-x^{2}-x-1}. Multiply \frac{3x^{2}+5x-1}{\left(x-1\right)\left(-x^{2}-x-1\right)} times \frac{x+1}{x+1}.
\frac{\left(3x+2\right)\left(-x^{2}-x-1\right)-\left(3x^{2}+5x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)}
Since \frac{\left(3x+2\right)\left(-x^{2}-x-1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)} and \frac{\left(3x^{2}+5x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x^{3}-3x^{2}-3x-2x^{2}-2x-2-3x^{3}-3x^{2}-5x^{2}-5x+x+1}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)}
Do the multiplications in \left(3x+2\right)\left(-x^{2}-x-1\right)-\left(3x^{2}+5x-1\right)\left(x+1\right).
\frac{-6x^{3}-13x^{2}-9x-1}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)}
Combine like terms in -3x^{3}-3x^{2}-3x-2x^{2}-2x-2-3x^{3}-3x^{2}-5x^{2}-5x+x+1.
\frac{-6x^{3}-13x^{2}-9x-1}{-x^{4}-x^{3}+x+1}
Expand \left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right).
\frac{1}{x-1}+\frac{2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+5x-1}{1-x^{3}}
Factor x^{2}-1.
\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+5x-1}{1-x^{3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and \left(x-1\right)\left(x+1\right) is \left(x-1\right)\left(x+1\right). Multiply \frac{1}{x-1} times \frac{x+1}{x+1}.
\frac{x+1+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+5x-1}{1-x^{3}}
Since \frac{x+1}{\left(x-1\right)\left(x+1\right)} and \frac{2x+1}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{3x+2}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+5x-1}{1-x^{3}}
Combine like terms in x+1+2x+1.
\frac{3x+2}{\left(x-1\right)\left(x+1\right)}-\frac{3x^{2}+5x-1}{\left(x-1\right)\left(-x^{2}-x-1\right)}
Factor 1-x^{3}.
\frac{\left(3x+2\right)\left(-x^{2}-x-1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)}-\frac{\left(3x^{2}+5x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and \left(x-1\right)\left(-x^{2}-x-1\right) is \left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right). Multiply \frac{3x+2}{\left(x-1\right)\left(x+1\right)} times \frac{-x^{2}-x-1}{-x^{2}-x-1}. Multiply \frac{3x^{2}+5x-1}{\left(x-1\right)\left(-x^{2}-x-1\right)} times \frac{x+1}{x+1}.
\frac{\left(3x+2\right)\left(-x^{2}-x-1\right)-\left(3x^{2}+5x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)}
Since \frac{\left(3x+2\right)\left(-x^{2}-x-1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)} and \frac{\left(3x^{2}+5x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x^{3}-3x^{2}-3x-2x^{2}-2x-2-3x^{3}-3x^{2}-5x^{2}-5x+x+1}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)}
Do the multiplications in \left(3x+2\right)\left(-x^{2}-x-1\right)-\left(3x^{2}+5x-1\right)\left(x+1\right).
\frac{-6x^{3}-13x^{2}-9x-1}{\left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right)}
Combine like terms in -3x^{3}-3x^{2}-3x-2x^{2}-2x-2-3x^{3}-3x^{2}-5x^{2}-5x+x+1.
\frac{-6x^{3}-13x^{2}-9x-1}{-x^{4}-x^{3}+x+1}
Expand \left(x-1\right)\left(x+1\right)\left(-x^{2}-x-1\right).