Solve for x
x=5
x = \frac{8}{5} = 1\frac{3}{5} = 1.6
Graph
Share
Copied to clipboard
4x-16+4x-4=5\left(x-4\right)\left(x-1\right)
Variable x cannot be equal to any of the values 1,4 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-4\right)\left(x-1\right), the least common multiple of x-1,x-4,4.
8x-16-4=5\left(x-4\right)\left(x-1\right)
Combine 4x and 4x to get 8x.
8x-20=5\left(x-4\right)\left(x-1\right)
Subtract 4 from -16 to get -20.
8x-20=\left(5x-20\right)\left(x-1\right)
Use the distributive property to multiply 5 by x-4.
8x-20=5x^{2}-25x+20
Use the distributive property to multiply 5x-20 by x-1 and combine like terms.
8x-20-5x^{2}=-25x+20
Subtract 5x^{2} from both sides.
8x-20-5x^{2}+25x=20
Add 25x to both sides.
33x-20-5x^{2}=20
Combine 8x and 25x to get 33x.
33x-20-5x^{2}-20=0
Subtract 20 from both sides.
33x-40-5x^{2}=0
Subtract 20 from -20 to get -40.
-5x^{2}+33x-40=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-33±\sqrt{33^{2}-4\left(-5\right)\left(-40\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 33 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-33±\sqrt{1089-4\left(-5\right)\left(-40\right)}}{2\left(-5\right)}
Square 33.
x=\frac{-33±\sqrt{1089+20\left(-40\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-33±\sqrt{1089-800}}{2\left(-5\right)}
Multiply 20 times -40.
x=\frac{-33±\sqrt{289}}{2\left(-5\right)}
Add 1089 to -800.
x=\frac{-33±17}{2\left(-5\right)}
Take the square root of 289.
x=\frac{-33±17}{-10}
Multiply 2 times -5.
x=-\frac{16}{-10}
Now solve the equation x=\frac{-33±17}{-10} when ± is plus. Add -33 to 17.
x=\frac{8}{5}
Reduce the fraction \frac{-16}{-10} to lowest terms by extracting and canceling out 2.
x=-\frac{50}{-10}
Now solve the equation x=\frac{-33±17}{-10} when ± is minus. Subtract 17 from -33.
x=5
Divide -50 by -10.
x=\frac{8}{5} x=5
The equation is now solved.
4x-16+4x-4=5\left(x-4\right)\left(x-1\right)
Variable x cannot be equal to any of the values 1,4 since division by zero is not defined. Multiply both sides of the equation by 4\left(x-4\right)\left(x-1\right), the least common multiple of x-1,x-4,4.
8x-16-4=5\left(x-4\right)\left(x-1\right)
Combine 4x and 4x to get 8x.
8x-20=5\left(x-4\right)\left(x-1\right)
Subtract 4 from -16 to get -20.
8x-20=\left(5x-20\right)\left(x-1\right)
Use the distributive property to multiply 5 by x-4.
8x-20=5x^{2}-25x+20
Use the distributive property to multiply 5x-20 by x-1 and combine like terms.
8x-20-5x^{2}=-25x+20
Subtract 5x^{2} from both sides.
8x-20-5x^{2}+25x=20
Add 25x to both sides.
33x-20-5x^{2}=20
Combine 8x and 25x to get 33x.
33x-5x^{2}=20+20
Add 20 to both sides.
33x-5x^{2}=40
Add 20 and 20 to get 40.
-5x^{2}+33x=40
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+33x}{-5}=\frac{40}{-5}
Divide both sides by -5.
x^{2}+\frac{33}{-5}x=\frac{40}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-\frac{33}{5}x=\frac{40}{-5}
Divide 33 by -5.
x^{2}-\frac{33}{5}x=-8
Divide 40 by -5.
x^{2}-\frac{33}{5}x+\left(-\frac{33}{10}\right)^{2}=-8+\left(-\frac{33}{10}\right)^{2}
Divide -\frac{33}{5}, the coefficient of the x term, by 2 to get -\frac{33}{10}. Then add the square of -\frac{33}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{33}{5}x+\frac{1089}{100}=-8+\frac{1089}{100}
Square -\frac{33}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{33}{5}x+\frac{1089}{100}=\frac{289}{100}
Add -8 to \frac{1089}{100}.
\left(x-\frac{33}{10}\right)^{2}=\frac{289}{100}
Factor x^{2}-\frac{33}{5}x+\frac{1089}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{33}{10}\right)^{2}}=\sqrt{\frac{289}{100}}
Take the square root of both sides of the equation.
x-\frac{33}{10}=\frac{17}{10} x-\frac{33}{10}=-\frac{17}{10}
Simplify.
x=5 x=\frac{8}{5}
Add \frac{33}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}