Evaluate
\frac{4x^{2}\left(x^{5}+x^{4}+x-1\right)}{x^{8}-1}
Differentiate w.r.t. x
\frac{4x\left(2-3x-6x^{4}-7x^{5}+6x^{8}-5x^{9}-2x^{12}-x^{13}\right)}{\left(x^{8}-1\right)^{2}}
Graph
Share
Copied to clipboard
\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{x^{2}+1}+\frac{4x^{2}}{x^{4}+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-1 and x+1 is \left(x-1\right)\left(x+1\right). Multiply \frac{1}{x-1} times \frac{x+1}{x+1}. Multiply \frac{1}{x+1} times \frac{x-1}{x-1}.
\frac{x+1+x-1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{x^{2}+1}+\frac{4x^{2}}{x^{4}+1}
Since \frac{x+1}{\left(x-1\right)\left(x+1\right)} and \frac{x-1}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{x^{2}+1}+\frac{4x^{2}}{x^{4}+1}
Combine like terms in x+1+x-1.
\frac{2x\left(x^{2}+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}+\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}+\frac{4x^{2}}{x^{4}+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and x^{2}+1 is \left(x-1\right)\left(x+1\right)\left(x^{2}+1\right). Multiply \frac{2x}{\left(x-1\right)\left(x+1\right)} times \frac{x^{2}+1}{x^{2}+1}. Multiply \frac{2x}{x^{2}+1} times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{2x\left(x^{2}+1\right)+2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}+\frac{4x^{2}}{x^{4}+1}
Since \frac{2x\left(x^{2}+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)} and \frac{2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{3}+2x+2x^{3}+2x^{2}-2x^{2}-2x}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}+\frac{4x^{2}}{x^{4}+1}
Do the multiplications in 2x\left(x^{2}+1\right)+2x\left(x-1\right)\left(x+1\right).
\frac{4x^{3}}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}+\frac{4x^{2}}{x^{4}+1}
Combine like terms in 2x^{3}+2x+2x^{3}+2x^{2}-2x^{2}-2x.
\frac{4x^{3}\left(x^{4}+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}+\frac{4x^{2}\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right)\left(x^{2}+1\right) and x^{4}+1 is \left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right). Multiply \frac{4x^{3}}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)} times \frac{x^{4}+1}{x^{4}+1}. Multiply \frac{4x^{2}}{x^{4}+1} times \frac{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}.
\frac{4x^{3}\left(x^{4}+1\right)+4x^{2}\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Since \frac{4x^{3}\left(x^{4}+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)} and \frac{4x^{2}\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)} have the same denominator, add them by adding their numerators.
\frac{4x^{7}+4x^{3}+4x^{6}+4x^{4}+4x^{5}+4x^{3}-4x^{5}-4x^{3}-4x^{4}-4x^{2}}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Do the multiplications in 4x^{3}\left(x^{4}+1\right)+4x^{2}\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right).
\frac{4x^{7}+4x^{3}+4x^{6}-4x^{2}}{\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Combine like terms in 4x^{7}+4x^{3}+4x^{6}+4x^{4}+4x^{5}+4x^{3}-4x^{5}-4x^{3}-4x^{4}-4x^{2}.
\frac{4x^{7}+4x^{3}+4x^{6}-4x^{2}}{x^{8}-1}
Expand \left(x-1\right)\left(x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}