Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+2}{x\left(x-2\right)\left(x+2\right)}-\frac{\left(x-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right) and x\left(x+2\right) is x\left(x-2\right)\left(x+2\right). Multiply \frac{1}{x\left(x-2\right)} times \frac{x+2}{x+2}. Multiply \frac{x-4}{x\left(x+2\right)} times \frac{x-2}{x-2}.
\frac{x+2-\left(x-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{\left(x-2\right)\left(x+2\right)}
Since \frac{x+2}{x\left(x-2\right)\left(x+2\right)} and \frac{\left(x-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+2-x^{2}+2x+4x-8}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in x+2-\left(x-4\right)\left(x-2\right).
\frac{7x-6-x^{2}}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{\left(x-2\right)\left(x+2\right)}
Combine like terms in x+2-x^{2}+2x+4x-8.
\frac{7x-6-x^{2}}{x\left(x-2\right)\left(x+2\right)}-\frac{2x}{x\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right)\left(x+2\right) and \left(x-2\right)\left(x+2\right) is x\left(x-2\right)\left(x+2\right). Multiply \frac{2}{\left(x-2\right)\left(x+2\right)} times \frac{x}{x}.
\frac{7x-6-x^{2}-2x}{x\left(x-2\right)\left(x+2\right)}
Since \frac{7x-6-x^{2}}{x\left(x-2\right)\left(x+2\right)} and \frac{2x}{x\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5x-6-x^{2}}{x\left(x-2\right)\left(x+2\right)}
Combine like terms in 7x-6-x^{2}-2x.
\frac{\left(x-3\right)\left(-x+2\right)}{x\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{5x-6-x^{2}}{x\left(x-2\right)\left(x+2\right)}.
\frac{-\left(x-3\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}
Extract the negative sign in 2-x.
\frac{-\left(x-3\right)}{x\left(x+2\right)}
Cancel out x-2 in both numerator and denominator.
\frac{-\left(x-3\right)}{x^{2}+2x}
Expand x\left(x+2\right).
\frac{-x-\left(-3\right)}{x^{2}+2x}
To find the opposite of x-3, find the opposite of each term.
\frac{-x+3}{x^{2}+2x}
The opposite of -3 is 3.
\frac{x+2}{x\left(x-2\right)\left(x+2\right)}-\frac{\left(x-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right) and x\left(x+2\right) is x\left(x-2\right)\left(x+2\right). Multiply \frac{1}{x\left(x-2\right)} times \frac{x+2}{x+2}. Multiply \frac{x-4}{x\left(x+2\right)} times \frac{x-2}{x-2}.
\frac{x+2-\left(x-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{\left(x-2\right)\left(x+2\right)}
Since \frac{x+2}{x\left(x-2\right)\left(x+2\right)} and \frac{\left(x-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+2-x^{2}+2x+4x-8}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{\left(x-2\right)\left(x+2\right)}
Do the multiplications in x+2-\left(x-4\right)\left(x-2\right).
\frac{7x-6-x^{2}}{x\left(x-2\right)\left(x+2\right)}-\frac{2}{\left(x-2\right)\left(x+2\right)}
Combine like terms in x+2-x^{2}+2x+4x-8.
\frac{7x-6-x^{2}}{x\left(x-2\right)\left(x+2\right)}-\frac{2x}{x\left(x-2\right)\left(x+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-2\right)\left(x+2\right) and \left(x-2\right)\left(x+2\right) is x\left(x-2\right)\left(x+2\right). Multiply \frac{2}{\left(x-2\right)\left(x+2\right)} times \frac{x}{x}.
\frac{7x-6-x^{2}-2x}{x\left(x-2\right)\left(x+2\right)}
Since \frac{7x-6-x^{2}}{x\left(x-2\right)\left(x+2\right)} and \frac{2x}{x\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{5x-6-x^{2}}{x\left(x-2\right)\left(x+2\right)}
Combine like terms in 7x-6-x^{2}-2x.
\frac{\left(x-3\right)\left(-x+2\right)}{x\left(x-2\right)\left(x+2\right)}
Factor the expressions that are not already factored in \frac{5x-6-x^{2}}{x\left(x-2\right)\left(x+2\right)}.
\frac{-\left(x-3\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}
Extract the negative sign in 2-x.
\frac{-\left(x-3\right)}{x\left(x+2\right)}
Cancel out x-2 in both numerator and denominator.
\frac{-\left(x-3\right)}{x^{2}+2x}
Expand x\left(x+2\right).
\frac{-x-\left(-3\right)}{x^{2}+2x}
To find the opposite of x-3, find the opposite of each term.
\frac{-x+3}{x^{2}+2x}
The opposite of -3 is 3.