\frac { 1 } { x ( x + 1 ) } + \frac { 1 } { x + 1 ( x + 2 ) } + \frac { 1 } { ( x + 2 ) ( x + 3 } + \frac { 1 } { ( x + 3 ) ( x + 4 ) } =
Evaluate
\frac{x^{3}+12x^{2}+24x+16}{2x\left(x+1\right)\left(x+2\right)\left(x+4\right)}
Expand
\frac{x^{3}+12x^{2}+24x+16}{2x\left(x+1\right)\left(x+2\right)\left(x+4\right)}
Graph
Share
Copied to clipboard
\frac{1}{x\left(x+1\right)}+\frac{1}{2\left(x+1\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Factor x+1\left(x+2\right).
\frac{2}{2x\left(x+1\right)}+\frac{x}{2x\left(x+1\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right) and 2\left(x+1\right) is 2x\left(x+1\right). Multiply \frac{1}{x\left(x+1\right)} times \frac{2}{2}. Multiply \frac{1}{2\left(x+1\right)} times \frac{x}{x}.
\frac{2+x}{2x\left(x+1\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Since \frac{2}{2x\left(x+1\right)} and \frac{x}{2x\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\left(2+x\right)\left(x+2\right)\left(x+3\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2x\left(x+1\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x\left(x+1\right) and \left(x+2\right)\left(x+3\right) is 2x\left(x+1\right)\left(x+2\right)\left(x+3\right). Multiply \frac{2+x}{2x\left(x+1\right)} times \frac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}. Multiply \frac{1}{\left(x+2\right)\left(x+3\right)} times \frac{2x\left(x+1\right)}{2x\left(x+1\right)}.
\frac{\left(2+x\right)\left(x+2\right)\left(x+3\right)+2x\left(x+1\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Since \frac{\left(2+x\right)\left(x+2\right)\left(x+3\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)} and \frac{2x\left(x+1\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+10x+12+x^{3}+5x^{2}+6x+2x^{2}+2x}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Do the multiplications in \left(2+x\right)\left(x+2\right)\left(x+3\right)+2x\left(x+1\right).
\frac{9x^{2}+18x+12+x^{3}}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Combine like terms in 2x^{2}+10x+12+x^{3}+5x^{2}+6x+2x^{2}+2x.
\frac{\left(9x^{2}+18x+12+x^{3}\right)\left(x+4\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}+\frac{2x\left(x+1\right)\left(x+2\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x\left(x+1\right)\left(x+2\right)\left(x+3\right) and \left(x+3\right)\left(x+4\right) is 2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right). Multiply \frac{9x^{2}+18x+12+x^{3}}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)} times \frac{x+4}{x+4}. Multiply \frac{1}{\left(x+3\right)\left(x+4\right)} times \frac{2x\left(x+1\right)\left(x+2\right)}{2x\left(x+1\right)\left(x+2\right)}.
\frac{\left(9x^{2}+18x+12+x^{3}\right)\left(x+4\right)+2x\left(x+1\right)\left(x+2\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}
Since \frac{\left(9x^{2}+18x+12+x^{3}\right)\left(x+4\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)} and \frac{2x\left(x+1\right)\left(x+2\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{9x^{3}+36x^{2}+18x^{2}+72x+12x+48+x^{4}+4x^{3}+2x^{3}+4x^{2}+2x^{2}+4x}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}
Do the multiplications in \left(9x^{2}+18x+12+x^{3}\right)\left(x+4\right)+2x\left(x+1\right)\left(x+2\right).
\frac{15x^{3}+60x^{2}+88x+48+x^{4}}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}
Combine like terms in 9x^{3}+36x^{2}+18x^{2}+72x+12x+48+x^{4}+4x^{3}+2x^{3}+4x^{2}+2x^{2}+4x.
\frac{\left(x+3\right)\left(x^{3}+12x^{2}+24x+16\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{15x^{3}+60x^{2}+88x+48+x^{4}}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}.
\frac{x^{3}+12x^{2}+24x+16}{2x\left(x+1\right)\left(x+2\right)\left(x+4\right)}
Cancel out x+3 in both numerator and denominator.
\frac{x^{3}+12x^{2}+24x+16}{2x^{4}+14x^{3}+28x^{2}+16x}
Expand 2x\left(x+1\right)\left(x+2\right)\left(x+4\right).
\frac{1}{x\left(x+1\right)}+\frac{1}{2\left(x+1\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Factor x+1\left(x+2\right).
\frac{2}{2x\left(x+1\right)}+\frac{x}{2x\left(x+1\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x+1\right) and 2\left(x+1\right) is 2x\left(x+1\right). Multiply \frac{1}{x\left(x+1\right)} times \frac{2}{2}. Multiply \frac{1}{2\left(x+1\right)} times \frac{x}{x}.
\frac{2+x}{2x\left(x+1\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Since \frac{2}{2x\left(x+1\right)} and \frac{x}{2x\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\left(2+x\right)\left(x+2\right)\left(x+3\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{2x\left(x+1\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x\left(x+1\right) and \left(x+2\right)\left(x+3\right) is 2x\left(x+1\right)\left(x+2\right)\left(x+3\right). Multiply \frac{2+x}{2x\left(x+1\right)} times \frac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}. Multiply \frac{1}{\left(x+2\right)\left(x+3\right)} times \frac{2x\left(x+1\right)}{2x\left(x+1\right)}.
\frac{\left(2+x\right)\left(x+2\right)\left(x+3\right)+2x\left(x+1\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Since \frac{\left(2+x\right)\left(x+2\right)\left(x+3\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)} and \frac{2x\left(x+1\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x^{2}+10x+12+x^{3}+5x^{2}+6x+2x^{2}+2x}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Do the multiplications in \left(2+x\right)\left(x+2\right)\left(x+3\right)+2x\left(x+1\right).
\frac{9x^{2}+18x+12+x^{3}}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}
Combine like terms in 2x^{2}+10x+12+x^{3}+5x^{2}+6x+2x^{2}+2x.
\frac{\left(9x^{2}+18x+12+x^{3}\right)\left(x+4\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}+\frac{2x\left(x+1\right)\left(x+2\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2x\left(x+1\right)\left(x+2\right)\left(x+3\right) and \left(x+3\right)\left(x+4\right) is 2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right). Multiply \frac{9x^{2}+18x+12+x^{3}}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)} times \frac{x+4}{x+4}. Multiply \frac{1}{\left(x+3\right)\left(x+4\right)} times \frac{2x\left(x+1\right)\left(x+2\right)}{2x\left(x+1\right)\left(x+2\right)}.
\frac{\left(9x^{2}+18x+12+x^{3}\right)\left(x+4\right)+2x\left(x+1\right)\left(x+2\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}
Since \frac{\left(9x^{2}+18x+12+x^{3}\right)\left(x+4\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)} and \frac{2x\left(x+1\right)\left(x+2\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{9x^{3}+36x^{2}+18x^{2}+72x+12x+48+x^{4}+4x^{3}+2x^{3}+4x^{2}+2x^{2}+4x}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}
Do the multiplications in \left(9x^{2}+18x+12+x^{3}\right)\left(x+4\right)+2x\left(x+1\right)\left(x+2\right).
\frac{15x^{3}+60x^{2}+88x+48+x^{4}}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}
Combine like terms in 9x^{3}+36x^{2}+18x^{2}+72x+12x+48+x^{4}+4x^{3}+2x^{3}+4x^{2}+2x^{2}+4x.
\frac{\left(x+3\right)\left(x^{3}+12x^{2}+24x+16\right)}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{15x^{3}+60x^{2}+88x+48+x^{4}}{2x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}.
\frac{x^{3}+12x^{2}+24x+16}{2x\left(x+1\right)\left(x+2\right)\left(x+4\right)}
Cancel out x+3 in both numerator and denominator.
\frac{x^{3}+12x^{2}+24x+16}{2x^{4}+14x^{3}+28x^{2}+16x}
Expand 2x\left(x+1\right)\left(x+2\right)\left(x+4\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}