Solve for m
m=\frac{1}{x}
x\neq 0
Solve for x
x=\frac{1}{m}
m\neq 0
Graph
Share
Copied to clipboard
1-mx=0
Multiply both sides of the equation by x.
-mx=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\left(-x\right)m=-1
The equation is in standard form.
\frac{\left(-x\right)m}{-x}=-\frac{1}{-x}
Divide both sides by -x.
m=-\frac{1}{-x}
Dividing by -x undoes the multiplication by -x.
m=\frac{1}{x}
Divide -1 by -x.
1-mx=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
-mx=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\left(-m\right)x=-1
The equation is in standard form.
\frac{\left(-m\right)x}{-m}=-\frac{1}{-m}
Divide both sides by -m.
x=-\frac{1}{-m}
Dividing by -m undoes the multiplication by -m.
x=\frac{1}{m}
Divide -1 by -m.
x=\frac{1}{m}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}