Solve for a
a=\frac{2}{x\left(x-2\right)}
x\neq 0\text{ and }x\neq 2
Solve for x (complex solution)
x=\frac{\sqrt{a\left(a+2\right)}+a}{a}
x=\frac{-\sqrt{a\left(a+2\right)}+a}{a}\text{, }a\neq 0
Solve for x
x=\frac{\sqrt{a\left(a+2\right)}+a}{a}
x=\frac{-\sqrt{a\left(a+2\right)}+a}{a}\text{, }a>0\text{ or }a\leq -2
Graph
Share
Copied to clipboard
x-2-x+x\left(x-2\right)a=0
Multiply both sides of the equation by x\left(x-2\right), the least common multiple of x,x-2.
x-2-x+\left(x^{2}-2x\right)a=0
Use the distributive property to multiply x by x-2.
x-2-x+x^{2}a-2xa=0
Use the distributive property to multiply x^{2}-2x by a.
-2-x+x^{2}a-2xa=-x
Subtract x from both sides. Anything subtracted from zero gives its negation.
-x+x^{2}a-2xa=-x+2
Add 2 to both sides.
x^{2}a-2xa=-x+2+x
Add x to both sides.
x^{2}a-2xa=2
Combine -x and x to get 0.
\left(x^{2}-2x\right)a=2
Combine all terms containing a.
\frac{\left(x^{2}-2x\right)a}{x^{2}-2x}=\frac{2}{x^{2}-2x}
Divide both sides by x^{2}-2x.
a=\frac{2}{x^{2}-2x}
Dividing by x^{2}-2x undoes the multiplication by x^{2}-2x.
a=\frac{2}{x\left(x-2\right)}
Divide 2 by x^{2}-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}